Liu Shanshan, Li Zihan, Yang Ke, Zhang Enze, Narayan Awadhesh, Zhang Xiaoqian, Zhu Jiayi, Liu Wenqing, Liao Zhiming, Kudo Masaki, Toriyama Takaaki, Yang Yunkun, Li Qiang, Ai Linfeng, Huang Ce, Sun Jiabao, Guo Xiaojiao, Bao Wenzhong, Deng Qingsong, Chen Yanhui, Yin Lifeng, Shen Jian, Han Xiaodong, Matsumura Syo, Zou Jin, Xu Yongbing, Xu Xiaodong, Wu Hua, Xiu Faxian
State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China.
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
Natl Sci Rev. 2021 Jul 2;9(6):nwab117. doi: 10.1093/nsr/nwab117. eCollection 2022 Jun.
Two-dimensional (2D) ferromagnetic materials have been discovered with tunable magnetism and orbital-driven nodal-line features. Controlling the 2D magnetism in exfoliated nanoflakes via electric/magnetic fields enables a boosted Curie temperature ( ) or phase transitions. One of the challenges, however, is the realization of high 2D magnets that are tunable, robust and suitable for large scale fabrication. Here, we report molecular-beam epitaxy growth of wafer-scale FeGeTe films with above room temperature. By controlling the Fe composition in FeGeTe, a continuously modulated in a broad range of 185-320 K has been achieved. This widely tunable is attributed to the doped interlayer Fe that provides a 40% enhancement around the optimal composition X = 2. We further fabricated magnetic tunneling junction device arrays that exhibit clear tunneling signals. Our results show an effective and reliable approach, i.e. element doping, to producing robust and tunable ferromagnetism beyond room temperature in a large-scale 2D FeGeTe fashion.
二维(2D)铁磁材料已被发现具有可调磁性和轨道驱动的节线特征。通过电场/磁场控制剥落纳米片中的二维磁性可提高居里温度( )或实现相变。然而,挑战之一是实现高 的二维磁体,该磁体可调、稳健且适合大规模制造。在此,我们报道了室温以上 的晶圆级FeGeTe薄膜的分子束外延生长。通过控制FeGeTe中的Fe成分,在185 - 320 K的宽范围内实现了连续调制的 。这种广泛可调的 归因于掺杂的层间Fe,其在最佳成分X = 2附近提供了40%的增强。我们进一步制造了表现出清晰隧穿信号的磁性隧道结器件阵列。我们的结果展示了一种有效且可靠的方法,即元素掺杂,以大规模二维FeGeTe方式在室温以上产生稳健且可调的铁磁性。