Liu Bo, Liu Shanshan, Yang Long, Chen Zhendong, Zhang Enze, Li Zihan, Wu Jing, Ruan Xuezhong, Xiu Faxian, Liu Wenqing, He Liang, Zhang Rong, Xu Yongbing
National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China.
State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China.
Phys Rev Lett. 2020 Dec 31;125(26):267205. doi: 10.1103/PhysRevLett.125.267205.
The recent discovery of intrinsic ferromagnetism in two-dimensional (2D) van der Waals (vdW) crystals has opened up a new arena for spintronics, raising an opportunity of achieving tunable intrinsic 2D vdW magnetism. Here, we show that the magnetization and the magnetic anisotropy energy (MAE) of few-layered Fe_{3}GeTe_{2} (FGT) is strongly modulated by a femtosecond laser pulse. Upon increasing the femtosecond laser excitation intensity, the saturation magnetization increases in an approximately linear way and the coercivity determined by the MAE decreases monotonically, showing unambiguously the effect of the laser pulse on magnetic ordering. This effect observed at room temperature reveals the emergence of light-driven room-temperature (300 K) ferromagnetism in 2D vdW FGT, as its intrinsic Curie temperature T_{C} is ∼200 K. The light-tunable ferromagnetism is attributed to the changes in the electronic structure due to the optical doping effect. Our findings pave a novel way to optically tune 2D vdW magnetism and enhance the T_{C} up to room temperature, promoting spintronic applications at or above room temperature.
二维(2D)范德华(vdW)晶体中本征铁磁性的最新发现为自旋电子学开辟了一个新领域,带来了实现可调谐本征二维范德华磁性的机遇。在此,我们表明少层Fe₃GeTe₂(FGT)的磁化强度和磁各向异性能量(MAE)受到飞秒激光脉冲的强烈调制。随着飞秒激光激发强度的增加,饱和磁化强度以近似线性的方式增加,由MAE确定的矫顽力单调降低,清楚地显示了激光脉冲对磁有序的影响。在室温下观察到的这种效应揭示了二维范德华FGT中光驱动室温(300 K)铁磁性的出现,因为其本征居里温度Tc约为200 K。光可调谐铁磁性归因于光学掺杂效应导致的电子结构变化。我们的发现为光学调控二维范德华磁性并将Tc提高到室温铺平了一条新途径,推动了室温及以上温度的自旋电子学应用。