State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.
Br J Pharmacol. 2022 Nov;179(22):5109-5131. doi: 10.1111/bph.15925. Epub 2022 Aug 9.
Pathological angiogenesis is a major cause of irreversible blindness in individuals with neovascular age-related macular degeneration (nAMD). Macrophages and microglia (MΦ) contribute to aberrant ocular angiogenesis. However, the role of glucose metabolism of MΦ in nAMD is still undefined. Here, we have investigated the involvement of glycolysis, driven by the kinase/phosphatase PFKFB3, in the development of choroidal neovascularization (CNV).
CNV was induced in mice with laser photocoagulation. Choroid/retinal pigment epithelium (RPE) complexes and MΦ were isolated for analysis by qRT-PCR, western blot, flow cytometry, immunostaining, metabolic measurements and angiogenesis assays.
MΦ accumulated within the CNV of murine nAMD models and expressed high levels of glycolysis-related enzymes and M1/M2 polarization markers. This phenotype of hyper-glycolytic and activated MΦ was replicated in bone marrow-derived macrophages stimulated by necrotic RPE in vitro. Myeloid cell-specific knockout of PFKFB3, a key glycolytic activator, attenuated pathological neovascularization in laser-induced CNV, which was associated with decreased expression of MΦ polarization markers and pro-angiogenic factors, along with decreased sprouting of vessels in choroid/RPE complexes. Mechanistically, necrotic RPE increased PFKFB3-driven glycolysis in macrophages, leading to activation of HIF-1α/HIF-2α and NF-κB, and subsequent induction of M1/M2 markers and pro-angiogenic cytokines, finally promoting macrophage reprogramming towards an angiogenic phenotype to facilitate development of CNV. The PFKFB3 inhibitor AZ67 also inhibited activation of HIF-1α/HIF-2α and NF-κB signalling and almost completely prevented laser-induced CNV in mice.
Modulation of PFKFB3-mediated macrophage glycolysis and activation is a promising strategy for the treatment of nAMD.
病理性血管生成是导致新生血管性年龄相关性黄斑变性(nAMD)患者不可逆性失明的主要原因。巨噬细胞和小胶质细胞(MΦ)参与了异常的眼部血管生成。然而,MΦ 糖代谢在 nAMD 中的作用仍未确定。在这里,我们研究了激酶/磷酸酶 PFKFB3 驱动的糖酵解在脉络膜新生血管(CNV)形成中的作用。
通过激光光凝诱导小鼠 CNV。通过 qRT-PCR、western blot、流式细胞术、免疫染色、代谢测量和血管生成测定分析脉络膜/视网膜色素上皮(RPE)复合物和 MΦ。
MΦ 在 nAMD 模型的 CNV 中积累,并表达高水平的糖酵解相关酶和 M1/M2 极化标志物。体外培养的坏死 RPE 刺激的骨髓来源巨噬细胞中也出现了这种高糖酵解和激活的 MΦ 表型。在激光诱导的 CNV 中,特异性敲除髓样细胞中的 PFKFB3(一种关键的糖酵解激活物)减弱了病理性新生血管形成,这与 MΦ 极化标志物和促血管生成因子的表达降低以及脉络膜/RPE 复合物中血管的发芽减少有关。在机制上,坏死的 RPE 增加了巨噬细胞中 PFKFB3 驱动的糖酵解,导致 HIF-1α/HIF-2α 和 NF-κB 的激活,随后诱导 M1/M2 标志物和促血管生成细胞因子的表达,最终促进巨噬细胞向促进血管生成的表型重编程,从而促进 CNV 的发生。PFKFB3 抑制剂 AZ67 也抑制了 HIF-1α/HIF-2α 和 NF-κB 信号的激活,并几乎完全阻止了小鼠的激光诱导的 CNV。
调节 PFKFB3 介导的巨噬细胞糖酵解和激活是治疗 nAMD 的一种有前途的策略。