Department of Diagnostic Imaging, Division of Neuroradiology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
Department of Medical Imaging, University of Toronto, Toronto, Canada.
Sci Rep. 2022 Jul 13;12(1):11872. doi: 10.1038/s41598-022-16066-w.
To predict adverse neurodevelopmental outcome of very preterm neonates. A total of 166 preterm neonates born between 24-32 weeks' gestation underwent brain MRI early in life. Radiomics features were extracted from T1- and T2- weighted images. Motor, cognitive, and language outcomes were assessed at a corrected age of 18 and 33 months and 4.5 years. Elastic Net was implemented to select the clinical and radiomic features that best predicted outcome. The area under the receiver operating characteristic (AUROC) curve was used to determine the predictive ability of each feature set. Clinical variables predicted cognitive outcome at 18 months with AUROC 0.76 and motor outcome at 4.5 years with AUROC 0.78. T1-radiomics features showed better prediction than T2-radiomics on the total motor outcome at 18 months and gross motor outcome at 33 months (AUROC: 0.81 vs 0.66 and 0.77 vs 0.7). T2-radiomics features were superior in two 4.5-year motor outcomes (AUROC: 0.78 vs 0.64 and 0.8 vs 0.57). Combining clinical parameters and radiomics features improved model performance in motor outcome at 4.5 years (AUROC: 0.84 vs 0.8). Radiomic features outperformed clinical variables for the prediction of adverse motor outcomes. Adding clinical variables to the radiomics model enhanced predictive performance.
为了预测极早产儿的不良神经发育结局,我们对 166 名 24-32 孕周出生的早产儿进行了早期脑部 MRI 检查。从 T1-和 T2-加权图像中提取放射组学特征。在矫正年龄 18 个月、33 个月和 4.5 岁时评估运动、认知和语言结局。实施弹性网络选择最佳预测结局的临床和放射组学特征。使用接收器工作特征曲线下的面积(AUROC)来确定每个特征集的预测能力。临床变量可预测 18 个月时的认知结局,AUROC 为 0.76,4.5 岁时的运动结局,AUROC 为 0.78。T1-放射组学特征在 18 个月时的总运动结局和 33 个月时的粗大运动结局方面优于 T2-放射组学(AUROC:0.81 比 0.66 和 0.77 比 0.7)。T2-放射组学特征在两个 4.5 岁的运动结局方面表现更优(AUROC:0.78 比 0.64 和 0.8 比 0.57)。将临床参数和放射组学特征相结合,可提高 4.5 岁时运动结局的模型性能(AUROC:0.84 比 0.8)。放射组学特征在预测不良运动结局方面优于临床变量。将临床变量添加到放射组学模型中可提高预测性能。