Suppr超能文献

测量非厄米简并的纽结和非对易辫子。

Measuring the knot of non-Hermitian degeneracies and non-commuting braids.

机构信息

Department of Physics, Yale University, New Haven, CT, USA.

Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA.

出版信息

Nature. 2022 Jul;607(7918):271-275. doi: 10.1038/s41586-022-04796-w. Epub 2022 Jul 13.

Abstract

Any system of coupled oscillators may be characterized by its spectrum of resonance frequencies (or eigenfrequencies), which can be tuned by varying the system's parameters. The relationship between control parameters and the eigenfrequency spectrum is central to a range of applications. However, fundamental aspects of this relationship remain poorly understood. For example, if the controls are varied along a path that returns to its starting point (that is, around a 'loop'), the system's spectrum must return to itself. In systems that are Hermitian (that is, lossless and reciprocal), this process is trivial and each resonance frequency returns to its original value. However, in non-Hermitian systems, where the eigenfrequencies are complex, the spectrum may return to itself in a topologically non-trivial manner, a phenomenon known as spectral flow. The spectral flow is determined by how the control loop encircles degeneracies, and this relationship is well understood for [Formula: see text] (where [Formula: see text] is the number of oscillators in the system). Here we extend this description to arbitrary [Formula: see text]. We show that control loops generically produce braids of eigenfrequencies, and for [Formula: see text] these braids form a non-Abelian group that reflects the non-trivial geometry of the space of degeneracies. We demonstrate these features experimentally for [Formula: see text] using a cavity optomechanical system.

摘要

任何耦合振荡器系统都可以通过其共振频率(或本征频率)的谱来表征,通过改变系统的参数可以对其进行调整。控制参数与本征频率谱之间的关系是一系列应用的核心。然而,这种关系的基本方面仍然理解得很差。例如,如果控制参数沿着返回其起始点的路径(即围绕“环路”)变化,那么系统的频谱必须回到自身。在厄米(即无损耗和互易)系统中,这个过程是微不足道的,每个共振频率都会回到其原始值。然而,在非厄米系统中,本征频率是复数的,频谱可能以拓扑非平凡的方式回到自身,这一现象称为谱流。谱流取决于控制环如何环绕简并,对于[公式:见正文](其中[公式:见正文]是系统中振荡器的数量),这种关系已经得到很好的理解。在这里,我们将这个描述扩展到任意的[公式:见正文]。我们表明,控制环通常会产生本征频率的辫子,对于[公式:见正文],这些辫子形成一个非阿贝尔群,反映了简并空间的非平凡几何形状。我们使用腔光机械系统对[公式:见正文]进行了实验验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验