Tang Weiyuan, Ding Kun, Ma Guancong
Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
Nat Commun. 2023 Oct 20;14(1):6660. doi: 10.1038/s41467-023-42414-z.
As the counterpart of Hermitian nodal structures, the geometry formed by exceptional points (EPs), such as exceptional lines (ELs), entails intriguing spectral topology. We report the experimental realization of order-3 exceptional lines (EL3) that are entirely embedded in order-2 exceptional surfaces (ES2) in a three-dimensional periodic synthetic momentum space. The EL3 and the concomitant ES2, together with the topology of the underlying space, prohibit the evaluation of their topology in the eigenvalue manifold by prevailing topological characterization methods. We use a winding number associated with the resultants of the Hamiltonian. This resultant winding number can be chosen to detect only the EL3 but ignores the ES2, allowing the diagnosis of the topological currents carried by the EL3, which enables the prediction of their evolution under perturbations. We further reveal the connection between the intersection multiplicity of the resultants and the winding of the resultant field around the EPs and generalize the approach for detecting and topologically characterizing higher-order EPs. Our work exemplifies the unprecedented topology of higher-order exceptional geometries and may inspire new non-Hermitian topological applications.
作为厄米特节点结构的对应物,由例外点(EPs)形成的几何结构,如例外线(ELs),具有引人入胜的谱拓扑。我们报告了三阶例外线(EL3)的实验实现,其完全嵌入三维周期性合成动量空间中的二阶例外面(ES2)中。EL3和伴随的ES2,连同基础空间的拓扑,使得用流行的拓扑表征方法在本征值流形中评估它们的拓扑变得不可能。我们使用与哈密顿量的合量相关的缠绕数。这个合量缠绕数可以被选择来仅检测EL3而忽略ES2,从而能够诊断由EL3携带的拓扑电流,这使得能够预测它们在微扰下的演化。我们进一步揭示了合量的相交重数与合量场围绕例外点的缠绕之间的联系,并推广了检测和拓扑表征高阶例外点的方法。我们的工作例证了高阶例外几何前所未有的拓扑,并可能激发新的非厄米特拓扑应用。