Suppr超能文献

具有非竞争性转录调控结构的随机基因转录。

Stochastic gene transcription with non-competitive transcription regulatory architecture.

机构信息

Kharial High School, Kanaipur, Hooghly, 712234, India.

出版信息

Eur Phys J E Soft Matter. 2022 Jul 13;45(7):61. doi: 10.1140/epje/s10189-022-00213-2.

Abstract

The transcription factors, such as activators and repressors, can interact with the promoter of gene either in a competitive or non-competitive way. In this paper, we construct a stochastic model with non-competitive transcriptional regulatory architecture and develop an analytical theory that re-establishes the experimental results with an improved data fitting. The analytical expressions in the theory allow us to study the nature of the system corresponding to any of its parameters and hence, enable us to find out the factors that govern the regulation of gene expression for that architecture. We notice that, along with transcriptional reinitiation and repressors, there are other parameters that can control the noisiness of this network. We also observe that, the Fano factor (at mRNA level) varies from sub-Poissonian regime to super-Poissonian regime. In addition to the aforementioned properties, we observe some anomalous characteristics of the Fano factor (at mRNA level) and that of the variance of protein at lower activator concentrations in the presence of repressor molecules. This model is useful to understand the architecture of interactions which may buffer the stochasticity inherent to gene transcription.

摘要

转录因子,如激活子和抑制子,可以以竞争或非竞争的方式与基因的启动子相互作用。在本文中,我们构建了一个具有非竞争转录调控结构的随机模型,并开发了一种分析理论,该理论通过改进的数据拟合重新确立了实验结果。该理论中的解析表达式允许我们研究与系统任何参数相对应的系统性质,从而使我们能够找出控制该结构基因表达调控的因素。我们注意到,除了转录重新起始和抑制子之外,还有其他参数可以控制这个网络的噪声。我们还观察到,在存在抑制子分子的情况下,mRNA 水平上的福诺因子(Fano factor)从亚泊松分布转变为超泊松分布。除了上述特性外,我们还观察到在较低激活剂浓度下,福诺因子(在 mRNA 水平上)和蛋白质方差的一些异常特征。该模型有助于理解可能缓冲基因转录固有随机性的相互作用结构。

相似文献

1
Stochastic gene transcription with non-competitive transcription regulatory architecture.
Eur Phys J E Soft Matter. 2022 Jul 13;45(7):61. doi: 10.1140/epje/s10189-022-00213-2.
2
Analysis of a detailed multi-stage model of stochastic gene expression using queueing theory and model reduction.
Math Biosci. 2024 Jul;373:109204. doi: 10.1016/j.mbs.2024.109204. Epub 2024 May 6.
3
Stochastic transcription initiation: Time dependent transcription rates.
Biophys Chem. 2006 Apr 20;121(1):51-6. doi: 10.1016/j.bpc.2005.12.010. Epub 2006 Jan 27.
4
Stochastic models of transcription: from single molecules to single cells.
Methods. 2013 Jul 15;62(1):13-25. doi: 10.1016/j.ymeth.2013.03.026. Epub 2013 Apr 1.
5
Constructing the energy landscape for genetic switching system driven by intrinsic noise.
PLoS One. 2014 Feb 13;9(2):e88167. doi: 10.1371/journal.pone.0088167. eCollection 2014.
6
Transcriptional stochasticity in gene expression.
J Theor Biol. 2006 Jan 21;238(2):348-67. doi: 10.1016/j.jtbi.2005.05.032. Epub 2005 Jul 21.
9
Conversion of graded to binary response in an activator-repressor system.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Feb;81(2 Pt 1):021905. doi: 10.1103/PhysRevE.81.021905. Epub 2010 Feb 3.
10
Out-of-equilibrium dynamics of gene expression and the Jarzynski equality.
Phys Rev Lett. 2008 May 9;100(18):188101. doi: 10.1103/PhysRevLett.100.188101. Epub 2008 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验