Suppr超能文献

使用排队论和模型降阶方法对详细的随机基因表达多级模型进行分析。

Analysis of a detailed multi-stage model of stochastic gene expression using queueing theory and model reduction.

机构信息

School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.

Department of Electrical and Computer Engineering, University of Delaware, Newark DE 19716, USA.

出版信息

Math Biosci. 2024 Jul;373:109204. doi: 10.1016/j.mbs.2024.109204. Epub 2024 May 6.

Abstract

We introduce a biologically detailed, stochastic model of gene expression describing the multiple rate-limiting steps of transcription, nuclear pre-mRNA processing, nuclear mRNA export, cytoplasmic mRNA degradation and translation of mRNA into protein. The processes in sub-cellular compartments are described by an arbitrary number of processing stages, thus accounting for a significantly finer molecular description of gene expression than conventional models such as the telegraph, two-stage and three-stage models of gene expression. We use two distinct tools, queueing theory and model reduction using the slow-scale linear-noise approximation, to derive exact or approximate analytic expressions for the moments or distributions of nuclear mRNA, cytoplasmic mRNA and protein fluctuations, as well as lower bounds for their Fano factors in steady-state conditions. We use these to study the phase diagram of the stochastic model; in particular we derive parametric conditions determining three types of transitions in the properties of mRNA fluctuations: from sub-Poissonian to super-Poissonian noise, from high noise in the nucleus to high noise in the cytoplasm, and from a monotonic increase to a monotonic decrease of the Fano factor with the number of processing stages. In contrast, protein fluctuations are always super-Poissonian and show weak dependence on the number of mRNA processing stages. Our results delineate the region of parameter space where conventional models give qualitatively incorrect results and provide insight into how the number of processing stages, e.g. the number of rate-limiting steps in initiation, splicing and mRNA degradation, shape stochastic gene expression by modulation of molecular memory.

摘要

我们介绍了一个详细的、随机的基因表达模型,该模型描述了转录、核前体 mRNA 加工、核 mRNA 输出、细胞质 mRNA 降解和 mRNA 翻译成蛋白质的多个限速步骤。亚细胞区室中的过程由任意数量的加工阶段描述,从而比传统的基因表达模型(如电报模型、两阶段和三阶段模型)更精细地描述了基因表达。我们使用两种不同的工具,排队论和使用慢尺度线性噪声逼近的模型简化,来推导出核 mRNA、细胞质 mRNA 和蛋白质波动的矩或分布的精确或近似解析表达式,以及它们在稳态条件下的 Fano 因子的下限。我们使用这些来研究随机模型的相图;特别是,我们推导出了确定 mRNA 波动特性的三种类型的跃迁的参数条件:从亚泊松噪声到超泊松噪声、从核中的高噪声到细胞质中的高噪声、以及从 Fano 因子随加工阶段数的单调增加到单调减少。相比之下,蛋白质波动总是超泊松的,并且与 mRNA 加工阶段的数量弱相关。我们的结果描绘了参数空间区域,在该区域内,传统模型给出了定性上不正确的结果,并深入了解了加工阶段的数量,例如起始、剪接和 mRNA 降解中的限速步骤的数量,通过调节分子记忆来塑造随机基因表达。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd30/11536769/3c9d67703449/nihms-2030559-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验