Department of Chemical Engineering, Université Laval, Québec, Québec, G1V 0A6, Canada.
BMC Biotechnol. 2022 Jul 13;22(1):20. doi: 10.1186/s12896-022-00750-w.
Unlike most other P450 cytochrome monooxygenases, CYP102A1 from Bacillus megaterium (BM3) is both soluble and fused to its redox partner forming a single polypeptide chain. Like other monooxygenases, it can catalyze the insertion of oxygen unto the carbon-hydrogen bond which can result in a wide variety of commercially relevant products for pharmaceutical and fine chemical industries. However, the instability of the enzyme holds back the implementation of a BM3-based biocatalytic industrial processes due to the important enzyme cost it would prompt.
In this work, we sought to enhance BM3's total specific product output by using experimental evolution, an approach not yet reported to improve this enzyme. By exploiting B. megaterium's own oleic acid metabolism, we pressed the evolution of a new variant of BM3, harbouring 34 new amino acid substitutions. The resulting variant, dubbed DE, increased the conversion of the substrate 10-pNCA to its product p-nitrophenolate 1.23 and 1.76-fold when using respectively NADPH or NADH as a cofactor, compared to wild type BM3.
This new DE variant, showed increased organic cosolvent tolerance, increased product output and increased versatility in the use of either nicotinamide cofactors NADPH and NADH. Experimental evolution can be used to evolve or to create libraries of evolved BM3 variants with increased productivity and cosolvent tolerance. Such libraries could in turn be used in bioinformatics to further evolve BM3 more precisely. The experimental evolution results also supports the hypothesis which surmises that one of the roles of BM3 in Bacillus megaterium is to protect it from exogenous unsaturated fatty acids by breaking them down.
不同于大多数其他 P450 细胞色素单加氧酶,巨大芽孢杆菌(BM3)中的 CYP102A1 既具有可溶性,又与它的氧化还原伴侣融合形成单一多肽链。与其他单加氧酶一样,它可以催化氧插入碳-氢键,从而产生各种医药和精细化工行业相关的商业产品。然而,由于该酶的不稳定性,会导致重要的酶成本增加,从而阻碍了基于 BM3 的生物催化工业过程的实施。
在这项工作中,我们试图通过实验进化来提高 BM3 的总比产物输出,这是一种尚未报道用于改进该酶的方法。通过利用巨大芽孢杆菌自身的油酸代谢,我们推动了一种新的 BM3 变体的进化,该变体含有 34 个新的氨基酸取代。所得变体,称为 DE,与野生型 BM3 相比,当分别使用 NADPH 或 NADH 作为辅助因子时,将底物 10-pNCA 转化为产物对硝基苯酚盐的转化率分别提高了 1.23 倍和 1.76 倍。
与野生型 BM3 相比,这种新的 DE 变体显示出更高的有机溶剂耐受性、更高的产物产量和更广泛的使用 NADPH 和 NADH 两种烟酰胺辅助因子的能力。实验进化可用于进化或创建具有更高生产力和有机溶剂耐受性的 BM3 变体文库。这些文库反过来可以在生物信息学中用于更精确地进化 BM3。实验进化结果也支持了这样一种假设,即 BM3 在巨大芽孢杆菌中的作用之一是通过分解它们来保护细菌免受外源不饱和脂肪酸的侵害。