Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
Int J Mol Sci. 2021 Oct 21;22(21):11380. doi: 10.3390/ijms222111380.
CYP102A1 (BM3) is a catalytically self-sufficient flavocytochrome fusion protein isolated from , which displays similar metabolic capabilities to many drug-metabolizing human P450 isoforms. BM3's high catalytic efficiency, ease of production and malleable active site makes the enzyme a desirable tool in the production of small molecule metabolites, especially for compounds that exhibit drug-like chemical properties. The engineering of select key residues within the BM3 active site vastly expands the catalytic repertoire, generating variants which can perform a range of modifications. This provides an attractive alternative route to the production of valuable compounds that are often laborious to synthesize via traditional organic means. Extensive studies have been conducted with the aim of engineering BM3 to expand metabolite production towards a comprehensive range of drug-like compounds, with many key examples found both in the literature and in the wider industrial bioproduction setting of desirable oxy-metabolite production by both wild-type BM3 and related variants. This review covers the past and current research on the engineering of BM3 to produce drug metabolites and highlights its crucial role in the future of biosynthetic pharmaceutical production.
CYP102A1(BM3)是一种从 中分离出的催化自足的黄素细胞色素融合蛋白,它显示出与许多代谢药物的人类 P450 同工酶相似的代谢能力。BM3 的高催化效率、易于生产和可塑的活性位点使其成为小分子代谢物生产的理想工具,特别是对于具有类似药物化学性质的化合物。在 BM3 活性位点中选择关键残基进行工程改造,极大地扩展了催化范围,产生了可以进行多种修饰的变体。这为生产有价值的化合物提供了一种有吸引力的替代途径,而这些化合物通常通过传统的有机方法合成非常繁琐。已经进行了广泛的研究,旨在通过工程改造 BM3 来扩大代谢产物的生产范围,涵盖广泛的类似药物的化合物,文献和更广泛的工业生物生产环境中都有许多关键实例,包括野生型 BM3 和相关变体对理想的氧化代谢物生产的研究。本综述涵盖了过去和当前关于 BM3 工程改造以生产药物代谢物的研究,并强调了它在生物制药生产未来的关键作用。