Pawar Suraj R, Rapp Ethan S, Gohean Jeffrey R, Longoria Raul G
Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712.
J Eng Sci Med Diagn Ther. 2022 Feb 1;5(1):011006. doi: 10.1115/1.4053065. Epub 2022 Jan 12.
Advancement of implanted left ventricular assist device (LVAD) technology includes modern sensing and control methods to enable online diagnostics and monitoring of patients using on-board sensors. These methods often rely on a cardiovascular system (CVS) model, the parameters of which must be identified for the specific patient. Some of these, such as the systemic vascular resistance (SVR), can be estimated online while others must be identified separately. This paper describes a three-staged approach for designing a parameter identification algorithm (PIA) for this problem. The approach is demonstrated using a two-element Windkessel model of the systemic circulation (SC) with a time-varying elastance for the left ventricle (LV). A parameter identifiability stage is followed by identification using an unscented Kalman filter (UKF), which uses measurements of LV pressure (P), aortic pressure (P), aortic flow (Q), and known input measurement of LVAD flowrate (Q). Both simulation and experimental data from animal experiments were used to evaluate the presented methods. By bounding the initial guess for left ventricular volume, the identified CVS model is able to reproduce signals of P, P, and Q within a normalized root mean squared error (nRMSE) of 5.1%, 19%, and 11%, respectively, during simulations. Experimentally, the identified model is able to estimate SVR with an accuracy of 3.4% compared with values from invasive measurements. Diagnostics and physiological control algorithms on-board modern LVADs could use CVS models other than those shown here, and the presented approach is easily adaptable to them. The methods also demonstrate how to test the robustness and accuracy of the identification algorithm.
植入式左心室辅助装置(LVAD)技术的进步包括现代传感和控制方法,以实现使用机载传感器对患者进行在线诊断和监测。这些方法通常依赖于心血管系统(CVS)模型,该模型的参数必须针对特定患者进行识别。其中一些参数,如全身血管阻力(SVR),可以在线估计,而其他参数则必须单独识别。本文描述了一种针对此问题设计参数识别算法(PIA)的三阶段方法。该方法通过使用具有时变弹性的左心室(LV)的双元件Windkessel体循环(SC)模型进行演示。参数可识别性阶段之后是使用无迹卡尔曼滤波器(UKF)进行识别,该滤波器使用左心室压力(P)、主动脉压力(P)、主动脉流量(Q)的测量值以及LVAD流量(Q)的已知输入测量值。动物实验的模拟和实验数据均用于评估所提出的方法。通过限制左心室容积的初始猜测值,在模拟过程中,识别出的CVS模型能够分别在5.1%、19%和11%的归一化均方根误差(nRMSE)内重现P、P和Q的信号。在实验中,与侵入性测量值相比,识别出的模型能够以3.4%的精度估计SVR。现代LVAD上的诊断和生理控制算法可以使用此处所示之外的CVS模型,并且所提出的方法很容易适用于它们。这些方法还展示了如何测试识别算法的鲁棒性和准确性。