Luo Zhenghui, Ma Ruijie, Yu Jianwei, Liu Heng, Liu Tao, Ni Fan, Hu Jiahao, Zou Yang, Zeng Anping, Su Chun-Jen, Jeng U-Ser, Lu Xinhui, Gao Feng, Yang Chuluo, Yan He
Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Hong Kong, China.
Natl Sci Rev. 2022 Apr 27;9(7):nwac076. doi: 10.1093/nsr/nwac076. eCollection 2022 Jul.
Rationally utilizing and developing synthetic units is of particular significance for the design of high-performance non-fullerene small-molecule acceptors (SMAs). Here, a thieno[32-]pyrrole synthetic unit was employed to develop a set of SMAs (ThPy1, ThPy2, ThPy3 and ThPy4) by changing the number or the position of the pyrrole ring in the central core based on a standard SMA of IT-4Cl, compared to which the four thieno[32-]pyrrole-based acceptors exhibit bathochromic absorption and upshifted frontier orbital energy level due to the strong electron-donating ability of pyrrole. As a result, the polymer solar cells (PSCs) of the four thieno[32-]pyrrole-based acceptors yield higher open-circuit voltage and lower energy loss relative to those of the IT-4Cl-based device. What is more, the ThPy3-based device achieves a power conversion efficiency (PCE) (15.3%) and an outstanding fill factor (FF) (0.771) that are superior to the IT-4Cl-based device (PCE = 12.6%, FF = 0.758). The ThPy4-based device realizes the lowest energy loss and the smallest optical band gap, and the ternary PSC device based on PM6:BTP-eC9:ThPy4 exhibits a PCE of 18.43% and a FF of 0.802. Overall, this work sheds light on the great potential of thieno[3,2-]pyrrole-based SMAs in realizing low energy loss and high PCE.
合理利用和开发合成单元对于高性能非富勒烯小分子受体(SMA)的设计具有特别重要的意义。在此,基于IT-4Cl的标准SMA,通过改变中心核中吡咯环的数量或位置,采用噻吩并[3,2-b]吡咯合成单元开发了一组SMA(ThPy1、ThPy2、ThPy3和ThPy4)。与基于IT-4Cl的受体相比,这四种基于噻吩并[3,2-b]吡咯的受体由于吡咯的强给电子能力而表现出红移吸收和前沿轨道能级上移。结果,相对于基于IT-4Cl的器件,这四种基于噻吩并[3,2-b]吡咯的受体的聚合物太阳能电池(PSC)产生更高的开路电压和更低的能量损失。此外,基于ThPy3的器件实现了功率转换效率(PCE)(15.3%)和出色的填充因子(FF)(0.771),优于基于IT-4Cl的器件(PCE = 12.6%,FF = 0.758)。基于ThPy4的器件实现了最低的能量损失和最小的光学带隙,基于PM6:BTP-eC9:ThPy4的三元PSC器件表现出18.43%的PCE和0.802的FF。总体而言,这项工作揭示了基于噻吩并[3,2-b]吡咯的SMA在实现低能量损失和高PCE方面的巨大潜力。