Suppr超能文献

使用微接触光刻与原位固化(MicroCLIP)工艺实现高分辨率三维打印陶瓷复合结构尺寸精确条件的方法。

Method for Attaining Dimensionally Accurate Conditions for High-Resolution Three-Dimensional Printing Ceramic Composite Structures Using MicroCLIP Process.

作者信息

Ware Henry Oliver T, Sun Cheng

机构信息

Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd. Rm. B224, Evanston, IL 60208.

出版信息

J Micro Nanomanuf. 2019 Sep;7(3):0310011-3100110. doi: 10.1115/1.4044128. Epub 2019 Jul 25.

Abstract

Continuous liquid interface production (CLIP) utilizes projection ultraviolet (UV) light and oxygen inhibition to transform the sequential layered three-dimensional (3D) manufacturing into a continuous fabrication flow with tremendous improved fabrication speed and structure integrity. Incorporating ceramic particles to the photo-curable polymers allows for additive manufacturing of ceramic parts featuring sophisticated geometries, mitigating the difficulties associated with traditional manufacturing processes. The presence of ceramic particles within the ink, however, strongly scatters the incident UV light. In the high-resolution CLIP (microCLIP) process, the scattering effect can significantly alter the process characteristics, resulting in broadening of lateral feature dimensions alongside curing depth reduction. Varying exposure conditions to accommodate scattering additionally affects the oxygen deadzone thickness (DZ), which is dependent on power of incident light. This introduces a systematic defocusing error for large deadzone thickness to further complicate process control, such as the unwanted narrowing of part features. In this work, we developed a systematic framework for process optimization by balancing those effects via experimental characterization. We showed that the reported method can provide a set of optimal process parameters (UV power and stage speed) for high-resolution 3D fabrication in accommodating the distinct characteristics of given photo-curable ceramic ink. The method to optimize process parameter was validated experimentally via fabricating a gradient index Luneburg lens comprising densely packed woodpile building-blocks with a strut width of 100 m and a layer thickness of 60 m using microCLIP at dimensionally accurate exposure conditions.

摘要

连续液体界面制造(CLIP)利用投射紫外光和氧抑制作用,将顺序分层的三维(3D)制造转变为连续制造流程,极大地提高了制造速度和结构完整性。将陶瓷颗粒加入到光固化聚合物中,能够增材制造具有复杂几何形状的陶瓷部件,减轻了传统制造工艺带来的困难。然而,墨水中陶瓷颗粒的存在会强烈散射入射紫外光。在高分辨率CLIP(microCLIP)工艺中,散射效应会显著改变工艺特性,导致横向特征尺寸变宽以及固化深度减小。改变曝光条件以适应散射还会影响氧死区厚度(DZ),而氧死区厚度取决于入射光的功率。对于较大的死区厚度,这会引入系统性的散焦误差,使工艺控制更加复杂,比如部件特征出现不必要的变窄。在这项工作中,我们通过实验表征平衡这些效应,开发了一个用于工艺优化的系统框架。我们表明,所报道的方法能够为高分辨率3D制造提供一组最佳工艺参数(紫外光功率和平台速度),以适应给定光固化陶瓷墨水的独特特性。通过在尺寸精确的曝光条件下使用microCLIP制造一个由密集堆积的木堆积木组成、支柱宽度为100μm且层厚为60μm的梯度折射率伦伯格透镜,对优化工艺参数的方法进行了实验验证。

相似文献

4
High-Speed 3D Printing of High-Performance Thermosetting Polymers via Two-Stage Curing.
Macromol Rapid Commun. 2018 Apr;39(7):e1700809. doi: 10.1002/marc.201700809. Epub 2018 Jan 31.
5
Rapid Continuous 3D Printing via Orthogonal Dual-Color Photoinitiation and Photoinhibition.
3D Print Addit Manuf. 2024 Apr 1;11(2):476-484. doi: 10.1089/3dp.2022.0278. Epub 2024 Apr 16.
6
X-ray computed tomography evaluations of additive manufactured multimaterial composites.
J Microsc. 2022 Mar;285(3):131-143. doi: 10.1111/jmi.13034. Epub 2021 Jun 4.
7
Selectively Metalizable Low-Temperature Cofired Ceramic for Three-Dimensional Electronics via Hybrid Additive Manufacturing.
ACS Appl Mater Interfaces. 2022 Jun 22;14(24):28060-28073. doi: 10.1021/acsami.2c03208. Epub 2022 Jun 10.
8
Three-Dimensional Printing of Poly(glycerol sebacate) Acrylate Scaffolds Digital Light Processing.
ACS Appl Bio Mater. 2020 Nov 16;3(11):7575-7588. doi: 10.1021/acsabm.0c00804. Epub 2020 Oct 26.
9
Optimization of photocrosslinkable resin components and 3D printing process parameters.
Acta Biomater. 2019 Oct 1;97:154-161. doi: 10.1016/j.actbio.2019.07.045. Epub 2019 Jul 26.
10
Stereolithographic Additive Manufacturing of High Precision Glass Ceramic Parts.
Materials (Basel). 2020 Mar 25;13(7):1492. doi: 10.3390/ma13071492.

引用本文的文献

1
Injection continuous liquid interface production of 3D objects.
Sci Adv. 2022 Sep 30;8(39):eabq3917. doi: 10.1126/sciadv.abq3917. Epub 2022 Sep 28.
3
Additive Manufacturing of Micro-Electro-Mechanical Systems (MEMS).
Micromachines (Basel). 2021 Nov 8;12(11):1374. doi: 10.3390/mi12111374.

本文引用的文献

1
A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing.
Sci Technol Adv Mater. 2015 May 5;16(3):033502. doi: 10.1088/1468-6996/16/3/033502. eCollection 2015 Jun.
3
3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery.
Ann Biomed Eng. 2017 Jan;45(1):23-44. doi: 10.1007/s10439-016-1678-3. Epub 2016 Jun 20.
4
3D-printing of transparent bio-microfluidic devices in PEG-DA.
Lab Chip. 2016 Jun 21;16(12):2287-94. doi: 10.1039/c6lc00153j. Epub 2016 May 24.
5
Additive manufacturing. Continuous liquid interface production of 3D objects.
Science. 2015 Mar 20;347(6228):1349-52. doi: 10.1126/science.aaa2397. Epub 2015 Mar 16.
6
3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications.
Mater Sci Eng C Mater Biol Appl. 2015 Feb;47:237-47. doi: 10.1016/j.msec.2014.11.024. Epub 2014 Nov 8.
7
Continuous-flow lithography for high-throughput microparticle synthesis.
Nat Mater. 2006 May;5(5):365-9. doi: 10.1038/nmat1617. Epub 2006 Apr 9.
8
Molar extinction coefficients and the photon absorption efficiency of dental photoinitiators and light curing units.
J Dent. 2005 Jul;33(6):525-32. doi: 10.1016/j.jdent.2004.11.013. Epub 2005 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验