Suppr超能文献

纳米颗粒阵列瞬态加热过程中温度的时空演化

Spatiotemporal Evolution of Temperature During Transient Heating of Nanoparticle Arrays.

作者信息

Xie Chen, Qin Zhenpeng

机构信息

Department of Mechanical Engineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080.

Department of Mechanical Engineering, Department of Bioengineering, Center for Advanced Pain Studies, University of Texas at Dallas 800 West Campbell Road, Richardson, TX 75080; Department of Surgery, University of Texas at Southwestern Medical Center, 800 West Campbell Road, Richardson, TX 75080.

出版信息

J Heat Transfer. 2022 Mar 1;144(3):031204. doi: 10.1115/1.4053196. Epub 2022 Jan 18.

Abstract

Nanoparticles (NPs) are promising agents to absorb external energy and generate heat. Clusters of NPs or NP array heating have found an essential role in several biomedical applications, diagnostic techniques, and chemical catalysis. Various studies have shed light on the heat transfer of nanostructures and greatly advanced our understanding of NP array heating. However, there is a lack of analytical tools and dimensionless parameters to describe the transient heating of NP arrays. Here we demonstrate a comprehensive analysis of the transient NP array heating. Firstly, we develop a set of analytical solutions for the NP array heating and provide a useful mathematical description of the spatial-temporal evolution of temperature for 2D, 3D, and spherical NP array heating. Based on this, we introduce the concept of thermal resolution that quantifies the relationship between minimal heating time, NP array size, energy intensity, and target temperature. Lastly, we define a set of dimensionless parameters that characterize the transition from confined heating to delocalized heating. This study advances the understanding of nanomaterials heating and guides the rational design of innovative approaches for NP array heating.

摘要

纳米颗粒(NPs)是吸收外部能量并产生热量的有前景的媒介。纳米颗粒团簇或纳米颗粒阵列加热在多种生物医学应用、诊断技术和化学催化中发挥着重要作用。各种研究揭示了纳米结构的热传递,并极大地推进了我们对纳米颗粒阵列加热的理解。然而,缺乏用于描述纳米颗粒阵列瞬态加热的分析工具和无量纲参数。在此,我们展示了对纳米颗粒阵列瞬态加热的全面分析。首先,我们开发了一组用于纳米颗粒阵列加热的解析解,并为二维、三维和球形纳米颗粒阵列加热的温度时空演化提供了有用的数学描述。基于此,我们引入了热分辨率的概念,该概念量化了最小加热时间、纳米颗粒阵列尺寸、能量强度和目标温度之间的关系。最后,我们定义了一组无量纲参数,这些参数表征了从受限加热到非定域加热的转变。这项研究推进了对纳米材料加热的理解,并指导了纳米颗粒阵列加热创新方法的合理设计。

相似文献

3
Photoinduced heating of nanoparticle arrays.纳米粒子阵列的光致加热。
ACS Nano. 2013 Aug 27;7(8):6478-88. doi: 10.1021/nn401924n. Epub 2013 Aug 8.
4
Three-Dimensional Nanoparticle Transformations Captured by an Electron Microscope.通过电子显微镜捕捉到的三维纳米颗粒转变
Acc Chem Res. 2021 Mar 2;54(5):1189-1199. doi: 10.1021/acs.accounts.0c00711. Epub 2021 Feb 10.
6
Spatially confined assembly of nanoparticles.纳米粒子的空间限制组装。
Acc Chem Res. 2014 Oct 21;47(10):3009-17. doi: 10.1021/ar500196r. Epub 2014 Sep 22.

本文引用的文献

4
Photothermal therapy.光热疗法。
J Control Release. 2020 Sep 10;325:52-71. doi: 10.1016/j.jconrel.2020.06.032. Epub 2020 Jun 30.
6
Thermal damage threshold of neurons during infrared stimulation.红外刺激期间神经元的热损伤阈值。
Biomed Opt Express. 2020 Mar 27;11(4):2224-2234. doi: 10.1364/BOE.383165. eCollection 2020 Apr 1.
8
Plasmonic Heating of Nanostructures.纳米结构的等离子体加热。
Chem Rev. 2019 Jul 10;119(13):8087-8130. doi: 10.1021/acs.chemrev.8b00738. Epub 2019 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验