Xie Chen, Kang Peiyuan, Cazals Johan, Castelán Omar Morales, Randrianalisoa Jaona, Qin Zhenpeng
Department of Mechanical Engineering, University of Texas at Dallas, 800 West Campbell Road EW31, Richardson, Texas 75080, USA.
Institut de Thermique, Mécanique, Matériaux (ITheMM EA 7548), University of Reims Champagne-Ardenne, Reims, Cedex 251687, France.
Nanoscale Adv. 2022 May 7;4(9):2090-2097. doi: 10.1039/D1NA00766A. Epub 2022 Feb 16.
With the ability to convert external excitation into heat, nanomaterials play an essential role in many biomedical applications. Two modes of nanoparticle (NP) array heating, nanoscale-confined heating (NCH) and macroscale-collective heating (MCH), have been found and extensively studied. Despite this, the resulting biological response at the protein level remains elusive. In this study, we developed a computational model to systematically investigate the single-pulsed heating of the NP array and corresponding protein denaturation/activation. We found that NCH may lead to targeted protein denaturation, however, nanoparticle heating does not lead to nanoscale selective TRPV1 channel activation. The excitation duration and NP concentration are primary factors that determine a window for targeted protein denaturation, and together with heating power, we defined quantified boundaries for targeted protein denaturation. Our results boost our understandings of the NCH and MCH under realistic physical constraints and provide robust guidance to customize biomedical platforms with desired NP heating.
由于具有将外部激发转化为热量的能力,纳米材料在许多生物医学应用中发挥着重要作用。已经发现并广泛研究了纳米颗粒(NP)阵列加热的两种模式,即纳米尺度受限加热(NCH)和宏观尺度集体加热(MCH)。尽管如此,在蛋白质水平上产生的生物反应仍然难以捉摸。在本研究中,我们开发了一个计算模型,以系统地研究NP阵列的单脉冲加热及相应的蛋白质变性/激活。我们发现,NCH可能导致靶向蛋白质变性,然而,纳米颗粒加热不会导致纳米尺度的选择性TRPV1通道激活。激发持续时间和NP浓度是决定靶向蛋白质变性窗口的主要因素,并且与加热功率一起,我们定义了靶向蛋白质变性的量化边界。我们的结果增进了我们在现实物理约束下对NCH和MCH的理解,并为定制具有所需NP加热的生物医学平台提供了有力指导。