Suppr超能文献

增强人类和啮齿动物少突胶质细胞形成的物质主要诱导胆固醇前体积累。

Enhancers of Human and Rodent Oligodendrocyte Formation Predominantly Induce Cholesterol Precursor Accumulation.

机构信息

Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States.

出版信息

ACS Chem Biol. 2022 Aug 19;17(8):2188-2200. doi: 10.1021/acschembio.2c00330. Epub 2022 Jul 14.

Abstract

Regeneration of myelin in the central nervous system is being pursued as a potential therapeutic approach for multiple sclerosis. Several labs have reported small molecules that promote oligodendrocyte formation and remyelination in vivo. Recently, we reported that many such molecules function by inhibiting a narrow window of enzymes in the cholesterol biosynthesis pathway. Here we describe a new high-throughput screen of 1,836 bioactive molecules and a thorough re-analysis of more than 60 molecules previously identified as promoting oligodendrocyte formation from human, rat, or mouse oligodendrocyte progenitor cells. These studies highlight that an overwhelming fraction of validated screening hits, including several molecules being evaluated clinically for remyelination, inhibit cholesterol pathway enzymes like emopamil-binding protein (EBP). To rationalize these findings, we suggest a model that relies on the high druggability of sterol-metabolizing enzymes and the ability of cationic amphiphiles to mimic the transition state of EBP. These studies further establish cholesterol pathway inhibition as a dominant mechanism among screening hits that enhance human, rat, or mouse oligodendrocyte formation.

摘要

中枢神经系统髓鞘的再生正被作为多发性硬化症的一种潜在治疗方法进行研究。几个实验室已经报道了一些小分子,可以在体内促进少突胶质细胞的形成和髓鞘再生。最近,我们报道称,许多这样的分子通过抑制胆固醇生物合成途径中的一个狭窄的酶窗口来发挥作用。在这里,我们描述了一个针对 1836 种生物活性分子的新高通量筛选,以及对之前从人、大鼠或小鼠少突胶质前体细胞中鉴定出的 60 多种促进少突胶质细胞形成的分子进行的彻底重新分析。这些研究突出表明,验证筛选命中的绝大多数,包括几种正在临床上评估用于髓鞘修复的分子,都抑制胆固醇途径酶,如 Emopamil 结合蛋白(EBP)。为了合理化这些发现,我们提出了一个模型,该模型依赖于固醇代谢酶的高可药性和阳离子两亲物模拟 EBP 过渡态的能力。这些研究进一步证实,胆固醇途径抑制是增强人、大鼠或小鼠少突胶质细胞形成的筛选命中的主要机制。

相似文献

1
Enhancers of Human and Rodent Oligodendrocyte Formation Predominantly Induce Cholesterol Precursor Accumulation.
ACS Chem Biol. 2022 Aug 19;17(8):2188-2200. doi: 10.1021/acschembio.2c00330. Epub 2022 Jul 14.
2
Accumulation of 8,9-unsaturated sterols drives oligodendrocyte formation and remyelination.
Nature. 2018 Aug;560(7718):372-376. doi: 10.1038/s41586-018-0360-3. Epub 2018 Jul 25.
3
Diverse Chemical Scaffolds Enhance Oligodendrocyte Formation by Inhibiting CYP51, TM7SF2, or EBP.
Cell Chem Biol. 2019 Apr 18;26(4):593-599.e4. doi: 10.1016/j.chembiol.2019.01.004. Epub 2019 Feb 14.
4
The landscape of targets and lead molecules for remyelination.
Nat Chem Biol. 2022 Sep;18(9):925-933. doi: 10.1038/s41589-022-01115-2. Epub 2022 Aug 22.
6
Modulation of lanosterol synthase drives 24,25-epoxysterol synthesis and oligodendrocyte formation.
Cell Chem Biol. 2021 Jun 17;28(6):866-875.e5. doi: 10.1016/j.chembiol.2021.01.025. Epub 2021 Feb 25.
7
8
[Mechanisms underlying remyelination with special focus on demyelination models of multiple sclerosis].
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020 Aug 25;49(4):524-530. doi: 10.3785/j.issn.1008-9292.2020.08.12.
9
Histamine Receptor 3 negatively regulates oligodendrocyte differentiation and remyelination.
PLoS One. 2017 Dec 18;12(12):e0189380. doi: 10.1371/journal.pone.0189380. eCollection 2017.

引用本文的文献

1
Regulation of CNS Lipids by Protease Activated Receptor 1.
J Neurochem. 2025 Mar;169(3):e70047. doi: 10.1111/jnc.70047.
2
Pharmacological targeting of smoothened receptor cysteine-rich domain by Budesonide promotes myelination.
Front Mol Neurosci. 2024 Oct 15;17:1473960. doi: 10.3389/fnmol.2024.1473960. eCollection 2024.
5
Chemical Inhibition of Sterol Biosynthesis.
Biomolecules. 2024 Mar 28;14(4):410. doi: 10.3390/biom14040410.
6
Pelizaeus-Merzbacher disease: on the cusp of myelin medicine.
Trends Mol Med. 2024 May;30(5):459-470. doi: 10.1016/j.molmed.2024.03.005. Epub 2024 Apr 5.
7
The Cholesterol-5,6-Epoxide Hydrolase: A Metabolic Checkpoint in Several Diseases.
Adv Exp Med Biol. 2024;1440:149-161. doi: 10.1007/978-3-031-43883-7_8.
9
The landscape of targets and lead molecules for remyelination.
Nat Chem Biol. 2022 Sep;18(9):925-933. doi: 10.1038/s41589-022-01115-2. Epub 2022 Aug 22.

本文引用的文献

1
High-throughput screening for myelination promoting compounds using human stem cell-derived oligodendrocyte progenitor cells.
iScience. 2023 Feb 8;26(3):106156. doi: 10.1016/j.isci.2023.106156. eCollection 2023 Mar 17.
2
Inhibition of SC4MOL and HSD17B7 shifts cellular sterol composition and promotes oligodendrocyte formation.
RSC Chem Biol. 2021 Oct 21;3(1):56-68. doi: 10.1039/d1cb00145k. eCollection 2022 Jan 5.
3
Modulation of lanosterol synthase drives 24,25-epoxysterol synthesis and oligodendrocyte formation.
Cell Chem Biol. 2021 Jun 17;28(6):866-875.e5. doi: 10.1016/j.chembiol.2021.01.025. Epub 2021 Feb 25.
4
Remyelination in multiple sclerosis: from basic science to clinical translation.
Lancet Neurol. 2020 Aug;19(8):678-688. doi: 10.1016/S1474-4422(20)30140-X.
5
Amiodarone Alters Cholesterol Biosynthesis through Tissue-Dependent Inhibition of Emopamil Binding Protein and Dehydrocholesterol Reductase 24.
ACS Chem Neurosci. 2020 May 20;11(10):1413-1423. doi: 10.1021/acschemneuro.0c00042. Epub 2020 Apr 29.
7
The fate and function of oligodendrocyte progenitor cells after traumatic spinal cord injury.
Glia. 2020 Feb;68(2):227-245. doi: 10.1002/glia.23706. Epub 2019 Aug 21.
8
Structural basis for human sterol isomerase in cholesterol biosynthesis and multidrug recognition.
Nat Commun. 2019 Jun 5;10(1):2452. doi: 10.1038/s41467-019-10279-w.
9
Diverse Chemical Scaffolds Enhance Oligodendrocyte Formation by Inhibiting CYP51, TM7SF2, or EBP.
Cell Chem Biol. 2019 Apr 18;26(4):593-599.e4. doi: 10.1016/j.chembiol.2019.01.004. Epub 2019 Feb 14.
10
Selective Estrogen Receptor Modulators Enhance CNS Remyelination Independent of Estrogen Receptors.
J Neurosci. 2019 Mar 20;39(12):2184-2194. doi: 10.1523/JNEUROSCI.1530-18.2019. Epub 2019 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验