Regul Toxicol Pharmacol. 2022 Oct;134:105219. doi: 10.1016/j.yrtph.2022.105219. Epub 2022 Jul 12.
Our aim is to develop and apply next generation approaches to skin allergy risk assessment that do not require new animal test data and better quantify uncertainties. Quantitative risk assessment for skin sensitisation uses safety assessment factors to extrapolate from the point of departure to an acceptable human exposure level. It is currently unclear whether these safety assessment factors are appropriate when using non-animal test data to derive a point-of departure. Our skin allergy risk assessment model Defined Approach uses Bayesian statistics to infer a human-relevant metric of sensitiser potency with explicit quantification of uncertainty, using any combination of human repeat insult patch test, local lymph node assay, direct peptide reactivity assay, KeratinoSens™, h-CLAT or U-SENS™ data. Here we describe the incorporation of benchmark exposures pertaining to use of consumer products with clinical data supporting a high/low risk categorisation for skin sensitisation. Margins-of-exposure (potency estimate to consumer exposure level ratio) are regressed against the benchmark risk classifications, enabling derivation of a risk metric defined as the probability that an exposure is low risk. This approach circumvents the use of safety assessment factors and provides a simple and transparent mechanism whereby clinical experience can directly feed-back into risk assessment decisions.
我们的目标是开发和应用下一代皮肤过敏风险评估方法,这些方法不需要新的动物测试数据,并能更好地量化不确定性。皮肤致敏的定量风险评估使用安全评估因素,从起始点推断出可接受的人类暴露水平。目前尚不清楚在使用非动物测试数据得出起始点时,这些安全评估因素是否适用。我们的皮肤过敏风险评估模型“定义方法”使用贝叶斯统计推断出与人类相关的敏化剂效力度量,明确量化不确定性,可结合使用任何组合的人体重复划痕试验、局部淋巴结测定、直接肽反应性测定、KeratinoSens™、h-CLAT 或 U-SENS™数据。在这里,我们描述了将与使用消费品相关的基准暴露纳入其中,并结合支持皮肤致敏高/低风险分类的临床数据。暴露量(效力估计值与消费者暴露水平的比值)与基准风险分类进行回归,从而得出风险度量,定义为暴露风险低的概率。这种方法避免了安全评估因素的使用,并提供了一种简单透明的机制,使临床经验能够直接反馈到风险评估决策中。