Qian Kang, Bao Xiaoyan, Li Yixian, Wang Pengzhen, Guo Qian, Yang Peng, Xu Shuting, Yu Fazhi, Meng Ran, Cheng Yunlong, Sheng Dongyu, Cao Jinxu, Xu Minjun, Wu Jing, Wang Tianying, Wang Yonghui, Xie Qiong, Lu Wei, Zhang Qizhi
Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China.
State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
ACS Nano. 2022 Jul 26;16(7):11455-11472. doi: 10.1021/acsnano.2c05795. Epub 2022 Jul 15.
Mitochondrial dysfunction in neurons has recently become a promising therapeutic target for Alzheimer's disease (AD). Regulation of dysfunctional mitochondria through multiple pathways rather than antioxidation monotherapy indicates synergistic therapeutic effects. Therefore, we developed a multifunctional hybrid peptide HNSS composed of antioxidant peptide SS31 and neuroprotective peptide S14G-Humanin. However, suitable peptide delivery systems with excellent loading capacity and effective at-site delivery are still absent. Herein, the nanoparticles made of citraconylation-modified poly(ethylene glycol)-poly(trimethylene carbonate) polymer (PEG-PTMC(Cit)) exhibited desirable loading of HNSS peptide through electrostatic interactions. Meanwhile, based on fibroblast growth factor receptor 1(FGFR1) overexpression in both the blood-brain barrier and cholinergic neuron, an FGFR1 ligand-FGL peptide was modified on the nanosystem (FGL-NP(Cit)/HNSS) to achieve 4.8-fold enhanced accumulation in brain with preferred distribution into cholinergic neurons in the diseased region. The acid-sensitive property of the nanosystem facilitated lysosomal escape and intracellular drug release by charge switching, resulting in HNSS enrichment in mitochondria through directing of the SS31 part. FGL-NP(Cit)/HNSS effectively rescued mitochondria dysfunction via the PGC-1α and STAT3 pathways, inhibited Aβ deposition and tau hyperphosphorylation, and ameliorated memory defects and cholinergic neuronal damage in 3xTg-AD mice. The work provides a potential platform for targeted cationic peptide delivery, harboring utility for peptide therapy in other neurodegenerative diseases.
神经元中的线粒体功能障碍最近已成为阿尔茨海默病(AD)一个很有前景的治疗靶点。通过多种途径而非抗氧化单一疗法来调节功能失调的线粒体显示出协同治疗效果。因此,我们开发了一种由抗氧化肽SS31和神经保护肽S14G - 人胰岛素(Humanin)组成的多功能杂合肽HNSS。然而,仍然缺乏具有优异负载能力和有效原位递送能力的合适肽递送系统。在此,由柠康酰化修饰的聚(乙二醇)-聚(三亚甲基碳酸酯)聚合物(PEG-PTMC(Cit))制成的纳米颗粒通过静电相互作用表现出对HNSS肽的理想负载。同时,基于血脑屏障和胆碱能神经元中均过表达的成纤维细胞生长因子受体1(FGFR1),在纳米系统(FGL-NP(Cit)/HNSS)上修饰了FGFR1配体 - FGL肽,以实现脑内蓄积增强4.8倍,且在病变区域优先分布到胆碱能神经元中。纳米系统的酸敏特性通过电荷转换促进了溶酶体逃逸和细胞内药物释放,通过引导SS31部分使HNSS在线粒体中富集。FGL-NP(Cit)/HNSS通过PGC-1α和STAT3途径有效挽救了线粒体功能障碍,抑制了Aβ沉积和tau过度磷酸化,并改善了3xTg-AD小鼠的记忆缺陷和胆碱能神经元损伤。这项工作为靶向阳离子肽递送提供了一个潜在平台,对其他神经退行性疾病的肽治疗具有实用性。