Suppr超能文献

使用自动化音节计数来检测临床环境下语音抄本中的缺失信息。

Using automated syllable counting to detect missing information in speech transcripts from clinical settings.

机构信息

Washington International School, Washington DC, United States.

Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway.

出版信息

Psychiatry Res. 2022 Sep;315:114712. doi: 10.1016/j.psychres.2022.114712. Epub 2022 Jul 5.

Abstract

Speech rate and quantity reflect clinical state; thus automated transcription holds potential clinical applications. We describe two datasets where recording quality and speaker characteristics affected transcription accuracy. Transcripts of low-quality recordings omitted significant portions of speech. An automated syllable counter estimated actual speech output and quantified the amount of missing information. The efficacy of this method differed by audio quality: the correlation between missing syllables and word error rate was only significant when quality was low. Automatically counting syllables could be useful to measure and flag transcription omissions in clinical contexts where speaker characteristics and recording quality are problematic.

摘要

语速和音量反映临床状态;因此,自动转录具有潜在的临床应用价值。我们描述了两个数据集,其中录音质量和说话者特征影响转录准确性。低质量录音的抄本遗漏了重要的讲话内容。自动音节计数器估计实际的语音输出,并量化缺失信息的数量。该方法的效果因音频质量而异:只有在质量较低时,缺失音节与单词错误率之间的相关性才具有统计学意义。在说话者特征和录音质量存在问题的临床环境中,自动计算音节数可用于测量和标记转录遗漏。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a5/9378537/559afe18af07/nihms-1823055-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验