Kong Deming, Liu Yong, Ren Zhengqi, Jung Yongmin, Kim Chanju, Chen Yong, Wheeler Natalie V, Petrovich Marco N, Pu Minhao, Yvind Kresten, Galili Michael, Oxenløwe Leif K, Richardson David J, Hu Hao
DTU Fotonik, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK.
Nat Commun. 2022 Jul 16;13(1):4139. doi: 10.1038/s41467-022-31884-2.
Today's optical communication systems are fast approaching their capacity limits in the conventional telecom bands. Opening up new wavelength bands is becoming an appealing solution to the capacity crunch. However, this ordinarily requires the development of optical transceivers for any new wavelength band, which is time-consuming and expensive. Here, we present an on-chip continuous spectral translation method that leverages existing commercial transceivers to unlock the vast and currently unused potential new wavelength bands. The spectral translators are continuous-wave laser pumped aluminum gallium arsenide on insulator (AlGaAsOI) nanowaveguides that provide a continuous conversion bandwidth over an octave. We demonstrate coherent transmission in the 2-μm band using well-developed conventional C-band transmitters and coherent receivers, as an example of the potential of the spectral translators that could also unlock communications at other wavelength bands. We demonstrate 318.25-Gbit s Nyquist wavelength-division multiplexed coherent transmission over a 1.15-km hollow-core fibre using this approach. Our demonstration paves the way for transmitting, detecting, and processing signals at wavelength bands beyond the capability of today's devices.
当今的光通信系统在传统电信频段正迅速逼近其容量极限。开辟新的波长频段正成为解决容量危机的一个有吸引力的方案。然而,这通常需要为任何新的波长频段开发光收发器,这既耗时又昂贵。在此,我们提出一种片上连续光谱转换方法,该方法利用现有的商用收发器来释放广阔且目前未被利用的潜在新波长频段。光谱转换器是连续波激光泵浦的绝缘体上铝镓砷(AlGaAsOI)纳米波导,其提供超过一个倍频程的连续转换带宽。我们以成熟的传统C波段发射器和相干接收器为例,展示了在2微米波段的相干传输,这体现了光谱转换器的潜力,其也能够开启其他波长频段的通信。我们使用这种方法在1.15公里长的空芯光纤上实现了318.25吉比特每秒的奈奎斯特波分复用相干传输。我们的演示为在当今设备能力之外的波长频段传输、检测和处理信号铺平了道路。