Suppr超能文献

与高敏改良格拉斯哥预后评分相比,改良格拉斯哥预后评分在预测软组织肉瘤患者的肿瘤学结局方面表现更佳。

Modified Glasgow Prognostic Score is Better for Predicting Oncological Outcome in Patients with Soft Tissue Sarcoma, Compared to High-Sensitivity Modified Glasgow Prognostic Score.

作者信息

Nakamura Tomoki, Asanuma Kunihiro, Hagi Tomohito, Sudo Akihiro

机构信息

Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Tsu City, Mie, 514-8507, Japan.

出版信息

J Inflamm Res. 2022 Jul 11;15:3891-3899. doi: 10.2147/JIR.S369993. eCollection 2022.

Abstract

BACKGROUND

Inflammation plays a critical role in the development, progression, clinical presentation, and diagnosis of tumours. We compared the usefulness of the high-sensitivity modified Glasgow prognostic score (HS-mGPS) and mGPS in predicting oncological outcomes in patients with soft tissue sarcomas (STSs) who underwent primary surgical tumour resection.

METHODS

Between 2002 and 2018, 144 patients were included in the study. The mean age of the patients was 63 years. The mean follow-up period was 76 months.

RESULTS

The disease-specific survival (DSS) at five years was 71.5% in all patients. When patients were divided into three groups according to the HS-mGPS and mGPS, those with a score of 1 or 2 had a poorer DSS than those with a score of 0, respectively. When we compared the survival rate among the 98 patients with both HS-mGPS and mGPS of 0 and 21 patients with HS-mGPS of 1 and mGPS of 0, there was no significant difference in the prognosis. In multivariate analysis, larger tumour size and higher mGPS remained significant.

CONCLUSION

mGPS is a reliable system for identifying patients at high risk for death in patients with STSs.

摘要

背景

炎症在肿瘤的发生、发展、临床表现及诊断中起着关键作用。我们比较了高敏改良格拉斯哥预后评分(HS-mGPS)和改良格拉斯哥预后评分(mGPS)在预测接受原发性肿瘤手术切除的软组织肉瘤(STS)患者肿瘤学结局方面的效用。

方法

2002年至2018年期间,144例患者纳入本研究。患者的平均年龄为63岁。平均随访期为76个月。

结果

所有患者的五年疾病特异性生存率(DSS)为71.5%。根据HS-mGPS和mGPS将患者分为三组时,评分1或2的患者的DSS分别比评分为0的患者差。当我们比较98例HS-mGPS和mGPS均为0的患者与21例HS-mGPS为1且mGPS为0的患者的生存率时,预后无显著差异。在多变量分析中,肿瘤体积较大和mGPS较高仍然具有显著性。

结论

mGPS是识别STS患者死亡高风险患者的可靠系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c98/9285857/b81cc6a11544/JIR-15-3891-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验