Suppr超能文献

Effect of tetraploidy on dendritic branching in neurons and glial cells of the frog, Xenopus laevis.

作者信息

Szaro B G, Tompkins R

出版信息

J Comp Neurol. 1987 Apr 8;258(2):304-16. doi: 10.1002/cne.902580210.

Abstract

Morphological aspects of four different groups of Golgi impregnated brain cells from a tetraploid strain of Xenopus laevis frogs were compared to analogous cells in comparably sized diploid frogs. The cells examined included neurons from the telencephalon, caudal hypothalamus, and optic tectum, and radial glial cells from the optic tectum. The brains of tetraploid frogs appeared grossly normal and were the same size and contained similar cell types as diploid brains. As observed in previous studies on polyploid amphibia, somal diameters increased significantly in tetraploid cells for each of the four groups of cells examined. Also, the total length of the dendritic arbors in tetraploid brain cells increased significantly by factors ranging from 1.4 to 2.4 times the total length of the analogous processes in diploid cells. Tetraploid neurons in the telencephalon and hypothalamus increased their arbor lengths predominantly by increasing the number of dendritic branches, while maintaining the average distance between branch points in the dendritic segments. In contrast, the tetraploid large pear-shaped neurons in the optic tectum had significantly longer terminal dendritic segments than the analogous diploid neurons, although these tetraploid neurons maintained their average number of dendritic segments per cell. Tetraploid tectal radial glial cells appeared to increase both their number of branches and the lengths of their terminal segments. Thus, the mode by which tetraploid brain cells achieved longer dendritic arbors varied from cell type to cell type. These results suggest a hypothetical basis for possible effects of genomic size on vertebrate brain structure and evolution at the cellular level.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验