Shamim Mohammad Jan, Kaga Akito, Tanaka Yu, Yamatani Hiroshi, Shiraiwa Tatsuhiko
Laboratory of Crop Science, Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan.
Front Plant Sci. 2022 Jun 29;13:910527. doi: 10.3389/fpls.2022.910527. eCollection 2022.
The culmination of conventional yield improving parameters has widened the margin between food demand and crop yield, leaving the potential yield productivity to be bridged by the manipulation of photosynthetic processes in plants. Efficient strategies to assess photosynthetic capacity in crops need to be developed to identify suitable targets that have the potential to improve photosynthetic efficiencies. Here, we assessed the photosynthetic capacity of the Japanese soybean mini core collection (GmJMC) using a newly developed high-throughput photosynthesis measurement system "MIC-100" to analyze physiological mechanisms and genetic architecture underpinning photosynthesis. K-means clustering of light-saturated photosynthesis ( ) classified GmJMC accessions into four distinct clusters with Cluster2 comprised of highly photosynthesizing accessions. Genome-wide association analysis based on the variation of revealed a significant association with a single nucleotide polymorphism (SNP) on chromosome 17. Among the candidate genes related to photosynthesis in the genomic region, variation in expression of a gene encoding G protein alpha subunit 1 (GPA1) showed a strong correlation ( = 0.72, < 0.01) with that of . Among GmJMC accessions, GmJMC47 was characterized by the highest , stomatal conductance ( ), stomatal densit ( ), electron transfer rate (), and light use efficiency of photosystem II () and the lowest non-photochemical quenching [()], indicating that GmJMC47 has greater CO supply and efficient light-harvesting systems. These results provide strong evidence that exploration of plant germplasm is a useful strategy to unlock the potential of resource use efficiencies for photosynthesis.
传统产量提高参数的极致表现扩大了粮食需求与作物产量之间的差距,使得通过调控植物光合作用过程来弥合潜在产量生产力成为必要。需要开发有效的策略来评估作物的光合能力,以确定有可能提高光合效率的合适目标。在此,我们使用新开发的高通量光合作用测量系统“MIC-100”评估了日本大豆微型核心种质(GmJMC)的光合能力,以分析光合作用的生理机制和遗传结构。基于光饱和光合作用( )的K均值聚类将GmJMC种质分为四个不同的簇,其中簇2由高光合种质组成。基于 的变异进行的全基因组关联分析揭示了与17号染色体上的一个单核苷酸多态性(SNP)存在显著关联。在该基因组区域中与光合作用相关的候选基因中,编码G蛋白α亚基1(GPA1)的基因表达变异与 的变异显示出强烈的相关性( = 0.72, < 0.01)。在GmJMC种质中,GmJMC47的特征在于最高的 、气孔导度( )、气孔密度( )、电子传递速率( )和光系统II的光利用效率( )以及最低的非光化学猝灭[( )],这表明GmJMC47具有更强的CO供应和高效的光捕获系统。这些结果提供了有力证据,表明探索植物种质是释放光合作用资源利用效率潜力的有用策略。