National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
Mol Genet Genomics. 2020 May;295(3):705-716. doi: 10.1007/s00438-020-01661-1. Epub 2020 Mar 12.
Photosynthesis plays an extremely important role throughout the life cycle of plants. Improving the photosynthetic rate is a major target for increasing crop productivity. This study was conducted to identify single nucleotide polymorphisms (SNPs) associated with the net photosynthetic rate (Pn), stomatal conductance (Cond), intercellular carbon dioxide concentration (Ci) and transpiration rate (Trmmol) through genome-wide association study (GWAS) and to inspect the relationships among these traits in soybean (Glycine max (L.) Merr.). A population of 219 soybean accessions was used in this research. A total of 12 quantitative trait loci (QTLs) associated with Pn, Cond, Ci and Trmmol were detected and distributed on chromosomes 1, 2, 6, 7, 9, 11, 12, 13, 15, 16, 18, and 19, and some of these QTL overlapped with previously reported QTLs. Furthermore, four candidate genes were identified, and there were significantly different expression levels between the high-light-efficiency accessions and low-light-efficiency accessions. These putative genes may participate in the regulation of photosynthesis through different metabolic pathways. Therefore, the associated novel QTLs and candidate genes detected in this study will provide a theoretical basis for genetic studies of photosynthesis and provide new avenues for crop improvement.
光合作用在植物的整个生命周期中起着极其重要的作用。提高光合速率是提高作物生产力的主要目标。本研究通过全基因组关联研究(GWAS)鉴定与净光合速率(Pn)、气孔导度(Cond)、胞间二氧化碳浓度(Ci)和蒸腾速率(Trmmol)相关的单核苷酸多态性(SNP),并检查大豆(Glycine max(L.)Merr.)中这些性状之间的关系。本研究使用了 219 个大豆种质资源。共检测到与 Pn、Cond、Ci 和 Trmmol 相关的 12 个数量性状位点(QTL),并分布在染色体 1、2、6、7、9、11、12、13、15、16、18 和 19 上,其中一些 QTL 与先前报道的 QTL 重叠。此外,还鉴定了四个候选基因,高光效品种和低光效品种之间的表达水平存在显著差异。这些假定的基因可能通过不同的代谢途径参与光合作用的调节。因此,本研究中检测到的相关新 QTL 和候选基因将为光合作用的遗传研究提供理论基础,并为作物改良提供新途径。