College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, China.
College of Transportation Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
Comput Intell Neurosci. 2022 Jul 7;2022:5133543. doi: 10.1155/2022/5133543. eCollection 2022.
In the daily inspection task of the expressway, accuracy and speed are the two most important indexes to reflect the detection efficiency of nondeformation diseases of asphalt pavement. To achieve model compression, accelerated detection, and accurate identification under multiscale conditions, a lightweight algorithm (PDNet) based on improved YOLOv5 is proposed. The algorithm is improved based on the network structure of YOLOv5, and the improved network structure is called YOLO-W. Firstly, a novel cross-layer weighted cascade aggregation network (W-PAN) is proposed to replace the original YOLOv5 network. Secondly, more economical GhostC3 and ShuffleConv modules are designed to replace C3 and Conv modules in the original network model. In terms of parameter setting, CIoU is selected as the loss function of the model, and the K-Means ++ algorithm is used for anchor box clustering. Before the model training, the confrontation generation network (GAN) and Poisson migration fusion algorithm (Poisson) are used for data enhancement and the negative sample training (NST) method is used to improve the robustness of the model. Finally, Softer-NMS is used to remove the prediction box in the prediction stage. Seven common asphalt pavement disease data sets (FAFU-PD) are constructed at the same time. Compared with the original YOLOv5 algorithm, PDNet improves the scores of FAFU-PD data sets on F1-score by 10 percentage points and FPS by 77.5%.
在高速公路的日常检测任务中,准确性和速度是反映沥青路面无变形病害检测效率的两个最重要指标。为了在多尺度条件下实现模型压缩、加速检测和准确识别,提出了一种基于改进 YOLOv5 的轻量级算法(PDNet)。该算法基于 YOLOv5 的网络结构进行改进,改进后的网络结构称为 YOLO-W。首先,提出了一种新颖的跨层加权级联聚合网络(W-PAN)来替代原始的 YOLOv5 网络。其次,设计了更经济的 GhostC3 和 ShuffleConv 模块来替代原始网络模型中的 C3 和 Conv 模块。在参数设置方面,选择 CIoU 作为模型的损失函数,并使用 K-Means++算法进行锚框聚类。在模型训练之前,使用对抗生成网络(GAN)和泊松迁移融合算法(Poisson)进行数据增强,并使用负样本训练(NST)方法提高模型的鲁棒性。最后,在预测阶段使用 Softer-NMS 去除预测框。同时构建了七个常见的沥青路面病害数据集(FAFU-PD)。与原始 YOLOv5 算法相比,PDNet 提高了 FAFU-PD 数据集在 F1-score 上的得分 10 个百分点,FPS 提高了 77.5%。