Suppr超能文献

基于多头自注意力机制和 CNN-BiLSTM-CRF 的地铁车载设备命名实体识别方法研究。

Research on Named Entity Recognition Method of Metro On-Board Equipment Based on Multiheaded Self-Attention Mechanism and CNN-BiLSTM-CRF.

机构信息

School of Automation & Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China.

出版信息

Comput Intell Neurosci. 2022 Jul 6;2022:6374988. doi: 10.1155/2022/6374988. eCollection 2022.

Abstract

Massive and complex unstructured fault text data will be generated during the operation of subway trains. A named entity recognition model of subway on-board equipment based on Multiheaded Self-attention mechanism and CNN-BiLSTM-CRF is proposed to address the issue of low recognition accuracy and incomplete recognition features of unstructured fault data named entity recognition task of subway on-board equipment: BiLSTM-CNN parallel network extracts context feature information and local attention information, respectively; In the MHA layer, the features learned from different dimensions are fused through the Multiheaded Self-attention mechanism, and the dependencies of various ranges in the sequence are captured to yield the internal structure information of the features. The conditional random field CRF is used to learn the internal relationship between tags to ensure their sequence. This model is tested with other named entity recognition models on the marked subway on-board fault data. The experimental results demonstrate that this model is able to recognize 10 kinds of labels in the dataset. Moreover, the recognition effect of each label has a good performance in the three evaluation indexes of , , and 1 score. Moreover, the weighted average evaluation indexes Avg - , Avg - , and Avg - of 10 labels in this model reach the highest 95.39%, 95.48%, and 95.37%, which has high evaluation indexes and can be applied to the named entity recognition of Metro on-board equipment.

摘要

在地铁列车运行过程中,会产生大量复杂的非结构化故障文本数据。针对地铁车载设备非结构化故障数据命名实体识别任务中命名实体识别准确率低、特征不完整的问题,提出了一种基于多头自注意力机制和 CNN-BiLSTM-CRF 的地铁车载设备命名实体识别模型:BiLSTM-CNN 并行网络分别提取上下文特征信息和局部注意力信息;在 MHA 层,通过多头自注意力机制融合来自不同维度的特征,捕捉序列中各种范围的依赖关系,得到特征的内部结构信息。条件随机场 CRF 用于学习标签之间的内部关系,以确保它们的序列。该模型在标记的地铁车载故障数据上与其他命名实体识别模型进行了测试。实验结果表明,该模型能够识别数据集中的 10 种标签。此外,在三个评估指标 、 和 1 分数中,每个标签的识别效果都有很好的性能。此外,该模型中 10 个标签的加权平均评估指标Avg-、Avg-和Avg-分别达到了最高的 95.39%、95.48%和 95.37%,评估指标较高,可应用于地铁车载设备的命名实体识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da8d/9279046/360967b53bda/CIN2022-6374988.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验