Suppr超能文献

基于天鹰座优化的优化压缩协同深度卷积神经网络的高光谱图像分类

Hyperspectral Image Classification with Optimized Compressed Synergic Deep Convolution Neural Network with Aquila Optimization.

作者信息

Subba Reddy Tatireddy, Harikiran Jonnadula, Enduri Murali Krishna, Hajarathaiah Koduru, Almakdi Sultan, Alshehri Mohammed, Naveed Quadri Noorulhasan, Rahman Md Habibur

机构信息

Computer Science and Engineering, B V Raju Institute of Technology, Narsapur, Medak, Telangana, India Pin: 502313.

School of CSE, VIT-AP University, Vijayawada, Pin: 522237, Andhrapradesh, India.

出版信息

Comput Intell Neurosci. 2022 Jul 7;2022:6781740. doi: 10.1155/2022/6781740. eCollection 2022.

Abstract

The classification technology of hyperspectral images (HSI) consists of many contiguous spectral bands that are often utilized for a various Earth observation activities, such as surveillance, detection, and identification. The incorporation of both spectral and spatial characteristics is necessary for improved classification accuracy. In the classification of hyperspectral images, deep learning has gained significant traction. This research analyzes how to accurately classify new HSI from limited samples with labels. A novel deep-learning-based categorization based on feature extraction and classification is designed for this purpose. Initial extraction of spectral and spatial information is followed by spectral and spatial information integration to generate fused features. The classification challenge is completed using a compressed synergic deep convolution neural network with Aquila optimization (CSDCNN-AO) model constructed by utilising a novel optimization technique known as the Aquila Optimizer (AO). The HSI, the Kennedy Space Center (KSC), the Indian Pines (IP) dataset, the Houston U (HU) dataset, and the Salinas Scene (SS) dataset are used for experiment assessment. The sequence testing on these four HSI-classified datasets demonstrate that our innovative framework outperforms the conventional technique on common evaluation measures such as average accuracy (AA), overall accuracy (OA), and Kappa coefficient (k). In addition, it significantly reduces training time and computational cost, resulting in enhanced training stability, maximum performance, and remarkable training accuracy.

摘要

高光谱图像(HSI)分类技术由许多连续的光谱波段组成,这些波段通常用于各种地球观测活动,如监视、探测和识别。结合光谱和空间特征对于提高分类精度是必要的。在高光谱图像分类中,深度学习已获得显著关注。本研究分析了如何从有限的带标签样本中准确分类新的高光谱图像。为此设计了一种基于特征提取和分类的新型深度学习分类方法。首先提取光谱和空间信息,然后进行光谱和空间信息融合以生成融合特征。使用一种名为天鹰座优化器(AO)的新型优化技术构建的带有天鹰座优化的压缩协同深度卷积神经网络(CSDCNN-AO)模型来完成分类挑战。使用高光谱图像、肯尼迪航天中心(KSC)、印第安纳松树(IP)数据集、休斯顿大学(HU)数据集和萨利纳斯场景(SS)数据集进行实验评估。在这四个高光谱图像分类数据集上的序列测试表明,我们的创新框架在平均精度(AA)、总体精度(OA)和卡帕系数(k)等常见评估指标上优于传统技术。此外,它显著减少了训练时间和计算成本,从而提高了训练稳定性、最大性能和显著的训练精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d16/9283000/fdda1cbe4cb0/CIN2022-6781740.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验