Department of Chemical Engineering, National Tsing Hua University, Taiwan 30013, R.O.C.
Acc Chem Res. 2022 Aug 2;55(15):2033-2042. doi: 10.1021/acs.accounts.2c00152. Epub 2022 Jul 18.
Through the morphological evolution to give highly optimized complex architectures at different length scales, fine-tuned textures for specific functions in living organisms can be achieved in nature such as a bone core with very complicated porous architecture to attain a significant structural efficiency attributed to delicately structured ligaments and density gradients. As inspired by nature, materials with periodic network structures (i.e., well-defined porous textures) in the nanoscale are appealing and promising for innovative properties. Biomimicking from nature, organic and/or inorganic nanonetworks can be synthetically fabricated, giving broadness and effectiveness when tuning the desired properties. Metamaterials are materials whose effective properties do not result from the bulk behavior of the constituent materials but rather mainly from their deliberate structuring. The performances of fabricating metamaterials will depend on the control of size, shape, order, and orientation of the forming textures. One of the appealing textures for the deliberate structuring is network architecture. Network materials possess self-supporting frameworks, open-cell character, high porosity, and large specific surface area, giving specific functions and complexity for diverse applications. As demonstrated by recent studies, exceptional mechanical performances such as negative thermal expansion, negative Poisson's ratio, and twisting under uniaxial forces can be achieved by the effect of the deliberate structuring with nanonetwork textures. In contrast to a top-down approach, a bottom-up approach is cost-effective, and also it can overcome the size limitation to reach nanoscale fabrication. It can be foreseen that network metamaterials with a feature size of tens of nanometers (referred as nanonetwork metamaterials) may provide new comprehension of the structure and property relationships for various materials. The self-assembly of block copolymers (BCPs) is one of the most used methods to build up well-ordered nanostructured phases from a bottom-up approach with precise control of size, shape, and orientation in the thin films for realistic applications. In this account, we summarize recent advancements in the fabrication of nanohybrids and nanoporous materials with well-ordered nanonetwork textures even with controlled helicity by combining block copolymer self-assembly and templated syntheses for mechanical and optical applications with superior properties beyond nature as metamaterials as well as chiral metamaterials with new properties for chiroptic applications such as chiral plasmonics, beam splitter, and negative refraction. The description of the fundamental facets of a nonconventional structure-property relationship with the characters of metamaterials and the state-of-the-art methodologies to fabricate nanonetworks using block copolymer self-assembly will stimulate research activities for the development of nanonetwork metamaterials with exceptional individual and multifunctional properties for futuristic devices.
通过形态演变,在不同的长度尺度上赋予高度优化的复杂结构,生物体中可以实现精细调整的特定功能的精细纹理,例如具有非常复杂多孔结构的骨芯,以实现归因于精细结构的韧带和密度梯度的显著结构效率。受自然启发,纳米尺度上具有周期性网络结构(即明确定义的多孔纹理)的材料具有吸引力和广阔的前景,可以实现创新特性。仿生学可以合成制备有机和/或无机纳米网络,在调整所需特性时具有广泛的效果。超材料是其有效特性不是源自组成材料的体行为,而是主要源自其有意的结构。超材料的制造性能取决于形成纹理的尺寸、形状、有序性和取向的控制。一种吸引人的有意结构纹理是网络架构。网络材料具有自支撑框架、开孔特性、高孔隙率和大比表面积,为各种应用提供特定功能和复杂性。正如最近的研究所示,通过纳米网络纹理的有意结构,可以实现负热膨胀、负泊松比和单轴力下扭转等出色的机械性能。与自上而下的方法相比,自下而上的方法具有成本效益,并且可以克服尺寸限制达到纳米级制造。可以预见的是,具有数十纳米特征尺寸(称为纳米网络超材料)的网络超材料可能会为各种材料的结构和性能关系提供新的认识。嵌段共聚物(BCPs)的自组装是从底部向上构建有序纳米结构相的最常用方法之一,通过在薄膜中精确控制尺寸、形状和取向,实现实际应用。在本报告中,我们总结了最近在通过结合嵌段共聚物自组装和模板合成来制造具有有序纳米网络纹理的纳米杂化材料和纳米多孔材料方面的进展,即使在机械和光学应用中具有受控螺旋性,这些材料具有超越自然的超材料以及具有手性等离子体、光束分光器和负折射等手性应用新特性的手性超材料的优异性能。对具有超材料特性的非常规结构-性能关系的基本方面的描述以及使用嵌段共聚物自组装制造纳米网络的最新方法,将激发研究活动,以开发具有出色的个体和多功能特性的纳米网络超材料,用于未来的设备。