Suppr超能文献

将(清洁后的)硫化矿山废物作为建筑材料资源加以利用。

Valorizing (cleaned) sulfidic mine waste as a resource for construction materials.

机构信息

KU Leuven, Centre for Economics and Corporate Sustainability (CEDON), 1000, Brussels, Belgium; KU Leuven, Department of Earth and Environmental Sciences, 3001, Leuven, Belgium.

University of Oulu, Faculty of Technology, Fibre and Particle Engineering Research Unit, PO Box, 4300, Finland.

出版信息

J Environ Manage. 2022 Oct 1;319:115742. doi: 10.1016/j.jenvman.2022.115742. Epub 2022 Jul 15.

Abstract

Proper management and storage of mine waste, e.g., tailings and waste rock, is one of the main issues that mining industries face. Additionally, there is already an uncountable amount of existent historical mine waste, which may, even centuries after the closure of the mine, still be leaching contaminants into the environment. One solution to minimize the risks associated with the mine waste, with also potential economic benefits, is through the valorization of the waste. This can be done by first recovering valuable metals and removing hazardous contaminants. Then, the remaining residue can be valorized into green construction materials, such as geopolymers, ceramics or cement. For some mine waste materials, such as those with only trace levels of metals that are not economically viable to extract, the "waste" can be reused directly without this additional cleaning step. In the present study, mine waste originating from three different sites was characterized and compared with the cleaned mine waste (i.e., cleaned by bioleaching or flotation methods) and with different types of green construction materials containing 13-80 wt% (cleaned and uncleaned) mine waste. Particular emphasis was given to the mobilization of metal(loid)s from the mine waste and construction materials (i.e., ceramics, alkali-activated materials and cement) under different conditions, through a series of leaching tests (i.e., EN 12457-2, US EPA's Toxicity Characteristic Leaching Procedure, and a pH-dependent leaching test). The leaching tests were applied to either mimic current 'natural' conditions at the mining site, conditions in a landfill (end of life) or extreme conditions (i.e., extremely acidic or alkaline pH). Most of the original mine waste samples contain high levels of Pb (18-3160 mg/kg), Zn (66-10500 mg/kg), and As (10-4620 mg/kg). . The cleaning methods were not always efficient in removing the metal(loid)s and sulfur. In some cases, the cleaned mine waste samples even contained higher total metal(loid) and sulfur concentrations than the original mine waste samples. Based on the leaching studies, some alkali-activated materials, ceramics, and cement effectively immobilized certain metals (e.g., <0.5 mg/kg of Pb and <4 mg/kg of Zn). Also, longer curing times of the alkali-activated materials, in most cases, improved the immobilization of metal(loid)s. Additionally, for ceramics, the temperature at which the test pieces were fired (up to 1060 °C), also played a major role in decreasing the mobility of some metal(loid)s, while increasing others (e.g., As, potentially via the structural rearrangement of As and Fe). Overall, through this detailed characterization, the environmental impact from the mine waste to the downstream products was evaluated, determining which valorization methods are the most viable to close the circular economy loop.

摘要

妥善管理和储存矿山废物(例如尾矿和废石)是采矿业面临的主要问题之一。此外,已经存在着数量无法计数的历史矿山废物,即使在矿山关闭数百年后,仍可能将污染物浸出到环境中。为了最大限度地降低与矿山废物相关的风险,同时带来潜在的经济效益,可以通过废物的增值利用来解决这个问题。这可以通过首先回收有价值的金属并去除有害污染物来实现。然后,可以将剩余的残渣转化为绿色建筑材料,如地聚合物、陶瓷或水泥。对于某些矿山废物材料,例如那些金属含量极低、提取不经济的废物,可以直接重复使用,而无需进行此额外的清洁步骤。在本研究中,对来自三个不同地点的矿山废物进行了特征描述,并将其与经过清洁的矿山废物(即通过生物浸出或浮选方法进行清洁)以及含有 13-80wt%(清洁和未清洁)矿山废物的不同类型的绿色建筑材料进行了比较。特别强调了在不同条件下(例如在采矿现场的当前“自然”条件、垃圾填埋场(使用寿命结束)的条件或极端条件(即非常酸性或碱性 pH 值)下)从矿山废物和建筑材料(例如陶瓷、碱激活材料和水泥)中迁移金属(类)的情况,通过一系列浸出试验(即 EN 12457-2、美国环保署的毒性特征浸出程序和依赖于 pH 值的浸出试验)进行了研究。浸出试验旨在模拟当前采矿现场的“自然”条件、垃圾填埋场(使用寿命结束)的条件或极端条件(即非常酸性或碱性 pH 值)。大多数原始矿山废物样品含有高浓度的 Pb(18-3160mg/kg)、Zn(66-10500mg/kg)和 As(10-4620mg/kg)。. 清洁方法并不总是能有效地去除金属(类)和硫。在某些情况下,经清洁的矿山废物样品中金属(类)和硫的总浓度甚至高于原始矿山废物样品。根据浸出研究,某些碱激活材料、陶瓷和水泥有效地固定了某些金属(例如,<0.5mg/kg 的 Pb 和 <4mg/kg 的 Zn)。此外,在大多数情况下,碱激活材料的更长固化时间改善了金属(类)的固定。此外,对于陶瓷,测试件烧制的温度(高达 1060°C)也在降低某些金属(类)的迁移性方面起着重要作用,同时增加了其他金属(类)的迁移性(例如,As,可能是通过 As 和 Fe 的结构重排)。总的来说,通过这种详细的特征描述,评估了矿山废物对下游产品的环境影响,确定了哪些增值利用方法最可行,以实现循环经济闭环。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验