Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan.
Oncology. 2022;100(10):555-568. doi: 10.1159/000525977. Epub 2022 Jul 18.
Altered glucose metabolism is associated with chemoresistance in colorectal cancer (CRC). This study aimed to illustrate the molecular mechanisms of glucose-mediated chemoresistance against irinotecan, a topoisomerase I inhibitor, focusing on the distinct roles of metabolites such as pyruvate and ATP in modulating cell death and proliferation.
Four human CRC cell lines, tumorspheres, and mouse xenograft models were treated with various doses of irinotecan in the presence of various concentrations of glucose, pyruvate, or ATP-encapsulated liposomes.
In this study, human CRC cell lines treated with irinotecan in high glucose displayed increased cell viability and larger xenograft tumor sizes in mouse models compared to those treated in normal glucose concentrations. Irinotecan induced apoptosis and necroptosis, both mitigated by high glucose. Liposomal ATP prevented irinotecan-induced apoptosis, while it did not affect necroptosis. In contrast, pyruvate attenuated the receptor-interacting protein kinase 1/3-dependent necroptosis via free radical scavenging without modulating apoptotic levels. Regarding the cell cycle, liposomal ATP aggravated the irinotecan-induced G0/G1 shift, whereas pyruvate diminished the G0/G1 shift, showing opposite effects on proliferation. Last, tumorsphere structural damage, an index of solid tumor responsiveness to chemotherapy, was determined. Liposomal ATP increased tumorsphere size while pyruvate prevented the deformation of spheroid mass.
Glucose metabolites confer tumor chemoresistance via multiple modes of action. Glycolytic pyruvate attenuated irinotecan-induced necroptosis and potentiated drug insensitivity by shifting cells from a proliferative to a quiescent state. On the other hand, ATP decreased irinotecan-induced apoptosis and promoted active cell proliferation, contributing to tumor recurrence. Our findings challenged the traditional view of ATP as the main factor for irinotecan chemoresistance and provided novel insights of pyruvate acting as an antioxidant responsible for drug insensitivity, which may shed light on the development of new therapies against recalcitrant cancers.
改变的葡萄糖代谢与结直肠癌(CRC)的化疗耐药性有关。本研究旨在阐明葡萄糖介导的针对拓扑异构酶 I 抑制剂伊立替康的化疗耐药的分子机制,重点研究代谢物如丙酮酸和 ATP 如何通过调节细胞死亡和增殖来发挥不同的作用。
用不同剂量的伊立替康处理四种人 CRC 细胞系、肿瘤球体和小鼠异种移植模型,并在存在不同浓度的葡萄糖、丙酮酸或 ATP 包封脂质体的情况下进行处理。
在这项研究中,与在正常葡萄糖浓度下处理的细胞相比,用高浓度葡萄糖处理的伊立替康处理的人 CRC 细胞系在小鼠模型中显示出增加的细胞活力和更大的异种移植肿瘤大小。伊立替康诱导的细胞凋亡和坏死均被高葡萄糖减轻。脂质体 ATP 可防止伊立替康诱导的细胞凋亡,但不影响坏死。相比之下,丙酮酸通过清除自由基减轻受体相互作用蛋白激酶 1/3 依赖性坏死,而不调节凋亡水平。关于细胞周期,脂质体 ATP 通过加剧伊立替康诱导的 G0/G1 转变来加重伊立替康的作用,而丙酮酸则通过减少 G0/G1 转变来减弱增殖作用,对增殖产生相反的影响。最后,测定了肿瘤球体结构损伤,这是化疗对实体瘤反应的一个指标。脂质体 ATP 增加了肿瘤球体的大小,而丙酮酸防止了球体质量的变形。
葡萄糖代谢物通过多种作用方式赋予肿瘤化疗耐药性。糖酵解产生的丙酮酸通过将细胞从增殖状态转变为静止状态,减轻伊立替康诱导的坏死并增强药物耐药性。另一方面,ATP 减少伊立替康诱导的细胞凋亡并促进细胞的积极增殖,导致肿瘤复发。我们的发现挑战了传统观点,即 ATP 是伊立替康化疗耐药的主要因素,并提供了丙酮酸作为抗氧化剂负责药物耐药性的新见解,这可能为治疗难治性癌症提供新的治疗思路。