Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803, United States.
ACS Synth Biol. 2022 Aug 19;11(8):2800-2810. doi: 10.1021/acssynbio.2c00180. Epub 2022 Jul 19.
Cell-free protein synthesis-based biosensors have been developed as highly accurate, low-cost biosensors. However, since most biomarkers exist at low concentrations in various types of biopsies, the biosensor's dynamic range must be increased in the system to achieve low limits of detection necessary while deciphering from higher background signals. Many attempts to increase the dynamic range have relied on amplifying the input signal from the analyte, which can lead to complications of false positives. In this study, we aimed to increase the protein synthesis capability of the cell-free protein synthesis system and the output signal of the reporter protein to achieve a lower limit of detection. We utilized a new fluorescent protein, mNeonGreen, which produces a higher output than those commonly used in cell-free biosensors. Optimizations of DNA sequence and the subsequent cell-free protein synthesis reaction conditions allowed characterizing protein expression variability by given DNA template types, reaction environment, and storage additives that cause the greatest time constraint on designing the cell-free biosensor. Finally, we characterized the fluorescence kinetics of mNeonGreen compared to the commonly used reporter protein, superfolder green fluorescent protein. We expect that this finely tuned cell-free protein synthesis platform with the new reporter protein can be used with sophisticated synthetic gene circuitry networks to increase the dynamic range of a cell-free biosensor to reach lower detection limits and reduce the false-positive proportion.
基于无细胞蛋白质合成的生物传感器已被开发为高度准确、低成本的生物传感器。然而,由于大多数生物标志物在各种类型的活检中浓度较低,因此必须在系统中增加生物传感器的动态范围,以实现从更高背景信号中破译所需的低检测限。许多增加动态范围的尝试都依赖于放大分析物的输入信号,这可能导致假阳性的并发症。在这项研究中,我们旨在提高无细胞蛋白质合成系统的蛋白质合成能力和报告蛋白的输出信号,以实现更低的检测限。我们利用了一种新型荧光蛋白 mNeonGreen,它产生的输出信号高于无细胞生物传感器中常用的荧光蛋白。通过对 DNA 序列进行优化和随后的无细胞蛋白质合成反应条件的优化,可以根据给定的 DNA 模板类型、反应环境和储存添加剂来表征蛋白质表达的可变性,这些因素对无细胞生物传感器的设计造成了最大的时间限制。最后,我们对 mNeonGreen 的荧光动力学与常用的报告蛋白超折叠绿色荧光蛋白进行了比较。我们预计,这个经过精细调整的无细胞蛋白质合成平台与新型报告蛋白可以与复杂的合成基因电路网络一起使用,以增加无细胞生物传感器的动态范围,达到更低的检测限,并降低假阳性比例。