Suppr超能文献

人工智能全自动心肌应变定量分析在急性心肌梗死后的风险分层中的应用。

Artificial intelligence fully automated myocardial strain quantification for risk stratification following acute myocardial infarction.

机构信息

Department of Cardiology and Pneumology, University Medical Centre, Georg-August-University Göttingen, Robert-Koch-Str. 40, 37099, Göttingen, Germany.

German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.

出版信息

Sci Rep. 2022 Jul 18;12(1):12220. doi: 10.1038/s41598-022-16228-w.

Abstract

Feasibility of automated volume-derived cardiac functional evaluation has successfully been demonstrated using cardiovascular magnetic resonance (CMR) imaging. Notwithstanding, strain assessment has proven incremental value for cardiovascular risk stratification. Since introduction of deformation imaging to clinical practice has been complicated by time-consuming post-processing, we sought to investigate automation respectively. CMR data (n = 1095 patients) from two prospectively recruited acute myocardial infarction (AMI) populations with ST-elevation (STEMI) (AIDA STEMI n = 759) and non-STEMI (TATORT-NSTEMI n = 336) were analysed fully automated and manually on conventional cine sequences. LV function assessment included global longitudinal, circumferential, and radial strains (GLS/GCS/GRS). Agreements were assessed between automated and manual strain assessments. The former were assessed for major adverse cardiac event (MACE) prediction within 12 months following AMI. Manually and automated derived GLS showed the best and excellent agreement with an intraclass correlation coefficient (ICC) of 0.81. Agreement was good for GCS and poor for GRS. Amongst automated analyses, GLS (HR 1.12, 95% CI 1.08-1.16, p < 0.001) and GCS (HR 1.07, 95% CI 1.05-1.10, p < 0.001) best predicted MACE with similar diagnostic accuracy compared to manual analyses; area under the curve (AUC) for GLS (auto 0.691 vs. manual 0.693, p = 0.801) and GCS (auto 0.668 vs. manual 0.686, p = 0.425). Amongst automated functional analyses, GLS was the only independent predictor of MACE in multivariate analyses (HR 1.10, 95% CI 1.04-1.15, p < 0.001). Considering high agreement of automated GLS and equally high accuracy for risk prediction compared to the reference standard of manual analyses, automation may improve efficiency and aid in clinical routine implementation.Trial registration: ClinicalTrials.gov, NCT00712101 and NCT01612312.

摘要

使用心血管磁共振(CMR)成像成功证明了自动容积衍生的心脏功能评估的可行性。尽管如此,应变评估已被证明对心血管风险分层具有附加价值。由于变形成像引入临床实践受到耗时的后处理的影响,我们试图进行自动化研究。对来自两个前瞻性招募的急性心肌梗死(AMI)患者群体的 CMR 数据(n=1095 例,ST 段抬高型心肌梗死(STEMI)(AIDA STEMI n=759)和非 ST 段抬高型心肌梗死(TATORT-NSTEMI)n=336)进行了全自动和手动常规电影序列分析。LV 功能评估包括整体纵向、圆周和径向应变(GLS/GCS/GRS)。评估了自动和手动应变评估之间的一致性。在 AMI 后 12 个月内,前者用于预测主要不良心脏事件(MACE)。手动和自动衍生的 GLS 具有最佳和极好的一致性,组内相关系数(ICC)为 0.81。GCS 的一致性良好,GRS 的一致性较差。在自动分析中,GLS(HR 1.12,95%CI 1.08-1.16,p<0.001)和 GCS(HR 1.07,95%CI 1.05-1.10,p<0.001)最佳预测 MACE,与手动分析具有相似的诊断准确性;GLS(自动 0.691 与手动 0.693,p=0.801)和 GCS(自动 0.668 与手动 0.686,p=0.425)的曲线下面积(AUC)。在自动功能分析中,GLS 是多变量分析中唯一独立预测 MACE 的因素(HR 1.10,95%CI 1.04-1.15,p<0.001)。考虑到自动 GLS 的高度一致性以及与手动分析参考标准相比同样高的预测准确性,自动化可能会提高效率并有助于临床常规实施。试验注册:ClinicalTrials.gov,NCT00712101 和 NCT01612312。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32e9/9293901/206dd9716fd8/41598_2022_16228_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验