Suppr超能文献

同步辐射 X 射线荧光技术鉴定节点铁和锌积累对小麦粒的贡献。

Synchrotron X-ray Fluorescence Technique Identifies Contribution of Node Iron and Zinc Accumulations to the Grain of Wheat.

机构信息

State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China.

Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China.

出版信息

J Agric Food Chem. 2022 Aug 3;70(30):9346-9355. doi: 10.1021/acs.jafc.2c02561. Epub 2022 Jul 19.

Abstract

Increasing iron (Fe) and zinc (Zn) concentrations in crop grains with high yield is an effective measure to ensure food supply and alleviate mineral malnutrition in humans. Micronutrient concentrations in grains depend on not only their availability in soils but also their uptake in roots and translocation to shoots and grains. In this three-year field study, we investigated genotypic variation in Fe and Zn uptake and translocation within six wheat cultivars and examined in detail Fe and Zn distributions in various tissues of two cultivars with similar high yield but different grain Fe and Zn concentrations using synchrotron micro-X-ray fluorescence. Results revealed that root Fe and Zn concentrations were 11 and 44% greater in high-nutrient (HN) than in low-nutrient (LN) concentration cultivar. Although both cultivars accumulated similar amounts of Fe in shoots, HN cultivar had greater accumulation of Fe in grain and greater accumulation of Zn in both shoots and grain. Grain Zn concentration was positively correlated with shoot Zn accumulation, and grain Fe concentration was positively correlated with the ability to translocate Fe from leaves/stem to grains. In the first nodes of shoots, HN cultivar had 482% greater Fe and 36% greater Zn concentrations in the enlarged vascular bundle (EVB) than LN cultivar. In top nodes, HN cultivar had 225 and 116% greater Fe and Zn concentrations in the transit vascular bundle and 77 and 71% greater in the EVB when compared to LN cultivar. HN cultivar also had a greater ability to allocate Fe and Zn to the grain than LN cultivar. In conclusion, HN cultivar had greater capacity of Fe and Zn acquirement by roots and translocation and partitioning from shoots into grains. Screening wheat cultivars for larger Fe and Zn concentrations in shoot nodes could be a novel strategy for breeding crops with greater grain Fe and Zn concentrations.

摘要

增加作物籽粒中高产量的铁(Fe)和锌(Zn)浓度是确保粮食供应和缓解人类矿物质营养不良的有效措施。谷物中的微量营养素浓度不仅取决于其在土壤中的可用性,还取决于其在根部的吸收以及向地上部分和籽粒的转运。在这项为期三年的田间研究中,我们研究了六个小麦品种中 Fe 和 Zn 吸收和转运的基因型变异,并使用同步加速器微 X 射线荧光详细研究了两个具有相似高产量但籽粒 Fe 和 Zn 浓度不同的品种中 Fe 和 Zn 的分布。结果表明,高养分(HN)浓度品种的根 Fe 和 Zn 浓度比低养分(LN)浓度品种分别高 11%和 44%。尽管两个品种在地上部分积累的 Fe 量相似,但 HN 品种在籽粒中积累的 Fe 量更大,在地上部分和籽粒中积累的 Zn 量也更大。籽粒 Zn 浓度与地上部分 Zn 积累量呈正相关,籽粒 Fe 浓度与将 Fe 从叶片/茎转运到籽粒的能力呈正相关。在地上部分的第一个节点中,HN 品种的扩大维管束(EVB)中的 Fe 和 Zn 浓度比 LN 品种分别高 482%和 36%。在顶部节点中,HN 品种的转运维管束和 EVB 中的 Fe 和 Zn 浓度分别比 LN 品种高 225%和 116%,高 77%和 71%。HN 品种向籽粒分配 Fe 和 Zn 的能力也比 LN 品种更强。综上所述,HN 品种具有通过根部获取和转运以及从地上部分向籽粒分配更多 Fe 和 Zn 的能力。筛选地上部分节点中 Fe 和 Zn 浓度较高的小麦品种可能是培育籽粒中 Fe 和 Zn 浓度更高的作物的一种新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验