Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan.
Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan.
Sci Total Environ. 2017 Dec 15;605-606:454-460. doi: 10.1016/j.scitotenv.2017.06.242. Epub 2017 Jun 30.
Given that plant uptake and transport systems for metals have some similarities, zinc (Zn)-biofortified cultivars may concurrently accumulate non-essential toxic heavy metals in grains. However, Zn-biofortified cultivars have never been tested for heavy metal accumulation in grains. In a pot experiment, we compared Zn-biofortified wheat (Zincol-2016) with a standard wheat (Faisalabad-2008) cultivar on heavy-metal-contaminated soils for yield response and grain accumulation of Zn, lead (Pb) and cadmium (Cd), without or with Zn fertilisation (8mgZnkg). The soils, collected from agricultural fields in (i) industrial zone and (ii) peri-urban area, had been receiving industrial and city effluents for >20years. In the two soils, Zn fertilisation significantly (P≤0.05) increased grain yield of both cultivars. Zinc fertilisation increased grain Zn concentration of Zincol-2016 and Faisalabad-2008 by respectively 32 and 18% in industrial-zone soil, and by 15 and 2% in peri-urban soil. Averaged across Zn rates, Zincol-2016 accumulated in grains more than double the Zn amount than Faisalabad-2008 in industrial-zone soil. At 0mgZnkg, grain Pb and Cd concentrations were respectively 26 and 33% greater in Zincol-2016 than Faisalabad-2008 in industrial-zone soil, and 86 and 50% greater in Zincol-2016 than Faisalabad-2008 in peri-urban soil. Zinc fertilisation significantly (P≤0.05) decreased concentration of Pb and Cd in grains of both cultivars. In industrial-zone soil, a toxic level of Pb in grains (0.24mgkg) was attained at control rate of Zn by Zincol-2016, and was decreased to a safe level (0.07mgkg) by application of 8mgZnkg. Therefore, biofortified cultivars should not be grown in contaminated soils, and/or sufficient Zn must be applied, to decrease accumulation of non-essential toxic heavy metals in grains. Moreover, future breeding efforts should be directed toward selection of biofortified cultivars that would selectively accumulate Zn in grains, but not the contaminants.
鉴于植物对金属的吸收和运输系统有一些相似之处,锌(Zn)强化品种可能会同时在谷物中积累非必需的有毒重金属。然而,Zn 强化品种从未在谷物重金属积累方面进行过测试。在一项盆栽实验中,我们比较了 Zn 强化小麦(Zincol-2016)与标准小麦(Faisalabad-2008)在受重金属污染的土壤上的产量反应和谷物对 Zn、铅(Pb)和镉(Cd)的积累,同时还进行了有无 Zn 施肥(8mgZnkg)的处理。这些土壤是从(i)工业区和(ii)城郊地区的农田中采集的,已经接收工业和城市废水超过 20 年。在这两种土壤中,Zn 施肥显著(P≤0.05)提高了两个品种的谷物产量。在工业区土壤中,Zn 施肥分别使 Zincol-2016 和 Faisalabad-2008 的谷物 Zn 浓度增加了 32%和 18%,在城郊土壤中增加了 15%和 2%。在 Zn 施肥率的平均值方面,Zincol-2016 在工业区土壤中积累的 Zn 量是 Faisalabad-2008 的两倍多。在 0mgZnkg 时,Zincol-2016 的谷物 Pb 和 Cd 浓度分别比 Faisalabad-2008 高 26%和 33%,在城郊土壤中分别高 86%和 50%。Zn 施肥显著(P≤0.05)降低了两个品种谷物中 Pb 和 Cd 的浓度。在工业区土壤中,Zincol-2016 在对照 Zn 施肥率下达到了谷物中 Pb 的毒性水平(0.24mgkg),而通过施用 8mgZnkg 将其降低到安全水平(0.07mgkg)。因此,在污染土壤中不应种植强化品种,并且/或者必须施用足够的 Zn,以减少非必需的有毒重金属在谷物中的积累。此外,未来的育种工作应致力于选择那些能够选择性地在谷物中积累 Zn 而不是污染物的强化品种。