Suppr超能文献

将基于人工智能的自闭症诊断辅助工具整合到社区卫生成果扩展自闭症初级保健模型中的可行性和影响:一项前瞻性观察性研究方案

Feasibility and Impact of Integrating an Artificial Intelligence-Based Diagnosis Aid for Autism Into the Extension for Community Health Outcomes Autism Primary Care Model: Protocol for a Prospective Observational Study.

作者信息

Sohl Kristin, Kilian Rachel, Brewer Curran Alicia, Mahurin Melissa, Nanclares-Nogués Valeria, Liu-Mayo Stuart, Salomon Carmela, Shannon Jennifer, Taraman Sharief

机构信息

ECHO Autism Communities, University of Missouri School of Medicine, Columbia, MO, United States.

SSI Strategy, Parsippany, NJ, United States.

出版信息

JMIR Res Protoc. 2022 Jul 19;11(7):e37576. doi: 10.2196/37576.

Abstract

BACKGROUND

The Extension for Community Health Outcomes (ECHO) Autism Program trains clinicians to screen, diagnose, and care for children with autism spectrum disorder (ASD) in primary care settings. This study will assess the feasibility and impact of integrating an artificial intelligence (AI)-based ASD diagnosis aid (the device) into the existing ECHO Autism Screening Tool for Autism in Toddlers and Young Children (STAT) diagnosis model. The prescription-only Software as a Medical Device, designed for use in children aged 18 to 72 months at risk for developmental delay, produces ASD diagnostic recommendations after analyzing behavioral features from 3 distinct inputs: a caregiver questionnaire, 2 short home videos analyzed by trained video analysts, and a health care provider questionnaire. The device is not a stand-alone diagnostic and should be used in conjunction with clinical judgment.

OBJECTIVE

This study aims to assess the feasibility and impact of integrating an AI-based ASD diagnosis aid into the ECHO Autism STAT diagnosis model. The time from initial ECHO Autism clinician concern to ASD diagnosis is the primary end point. Secondary end points include the time from initial caregiver concern to ASD diagnosis, time from diagnosis to treatment initiation, and clinician and caregiver experience of device use as part of the ASD diagnostic journey.

METHODS

Research participants for this prospective observational study will be patients suspected of having ASD (aged 18-72 months) and their caregivers and up to 15 trained ECHO Autism clinicians recruited by the ECHO Autism Communities research team from across rural and suburban areas of the United States. Clinicians will provide routine clinical care and conduct best practice ECHO Autism diagnostic evaluations in addition to prescribing the device. Outcome data will be collected via a combination of electronic questionnaires, reviews of standard clinical care records, and analysis of device outputs. The expected study duration is no more than 12 months. The study was approved by the institutional review board of the University of Missouri-Columbia (institutional review board-assigned project number 2075722).

RESULTS

Participant recruitment began in April 2022. As of June 2022, a total of 41 participants have been enrolled.

CONCLUSIONS

This prospective observational study will be the first to evaluate the use of a novel AI-based ASD diagnosis aid as part of a real-world primary care diagnostic pathway. If device integration into primary care proves feasible and efficacious, prolonged delays between the first ASD concern and eventual diagnosis may be reduced. Streamlining primary care ASD diagnosis could potentially reduce the strain on specialty services and allow a greater proportion of children to commence early intervention during a critical neurodevelopmental window.

TRIAL REGISTRATION

ClinicalTrials.gov NCT05223374; https://clinicaltrials.gov/ct2/show/NCT05223374.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/37576.

摘要

背景

社区健康成果扩展(ECHO)自闭症项目培训临床医生在初级保健环境中对自闭症谱系障碍(ASD)儿童进行筛查、诊断和护理。本研究将评估将基于人工智能(AI)的ASD诊断辅助工具(该设备)整合到现有的ECHO幼儿自闭症筛查工具(STAT)诊断模型中的可行性和影响。该仅需处方的医疗器械软件专为有发育迟缓风险的18至72个月儿童设计,在分析来自3个不同输入的行为特征后生成ASD诊断建议:一份照顾者问卷、由经过培训的视频分析师分析的2段简短家庭视频,以及一份医疗保健提供者问卷。该设备并非独立诊断工具,应与临床判断结合使用。

目的

本研究旨在评估将基于AI的ASD诊断辅助工具整合到ECHO自闭症STAT诊断模型中的可行性和影响。从ECHO自闭症临床医生最初关注到ASD诊断的时间是主要终点。次要终点包括从照顾者最初关注到ASD诊断的时间、从诊断到开始治疗的时间,以及临床医生和照顾者在ASD诊断过程中使用该设备的体验。

方法

这项前瞻性观察性研究的研究参与者将是疑似患有ASD的患者(18 - 72个月)及其照顾者,以及由ECHO自闭症社区研究团队从美国农村和郊区招募的多达15名经过培训的ECHO自闭症临床医生。临床医生除了开具该设备的处方外,还将提供常规临床护理并进行最佳实践的ECHO自闭症诊断评估。结局数据将通过电子问卷、标准临床护理记录审查以及设备输出分析相结合的方式收集。预期研究持续时间不超过12个月。该研究已获得密苏里大学哥伦比亚分校机构审查委员会的批准(机构审查委员会指定的项目编号2075722)。

结果

参与者招募于2022年4月开始。截至2022年6月,共招募了41名参与者。

结论

这项前瞻性观察性研究将首次评估一种新型基于AI的ASD诊断辅助工具作为现实世界初级保健诊断途径一部分的使用情况。如果将该设备整合到初级保健中被证明是可行且有效的,那么在首次ASD关注与最终诊断之间的长期延迟可能会减少。简化初级保健中的ASD诊断可能会减轻专科服务的压力,并使更大比例的儿童能够在关键的神经发育窗口期开始早期干预。

试验注册

ClinicalTrials.gov NCT05223374;https://clinicaltrials.gov/ct2/show/NCT05223374。

国际注册报告识别码(IRRID):PRR1 - 10.2196/37576。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a16/9346562/d938e71862c8/resprot_v11i7e37576_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验