Suppr超能文献

个性化抗退联邦学习方法在医学数据不平衡中的应用。

Personalized Retrogress-Resilient Federated Learning Toward Imbalanced Medical Data.

出版信息

IEEE Trans Med Imaging. 2022 Dec;41(12):3663-3674. doi: 10.1109/TMI.2022.3192483. Epub 2022 Dec 2.

Abstract

Clinically oriented deep learning algorithms, combined with large-scale medical datasets, have significantly promoted computer-aided diagnosis. To address increasing ethical and privacy issues, Federated Learning (FL) adopts a distributed paradigm to collaboratively train models, rather than collecting samples from multiple institutions for centralized training. Despite intensive research on FL, two major challenges are still existing when applying FL in the real-world medical scenarios, including the performance degradation (i.e., retrogress) after each communication and the intractable class imbalance. Thus, in this paper, we propose a novel personalized FL framework to tackle these two problems. For the retrogress problem, we first devise a Progressive Fourier Aggregation (PFA) at the server side to gradually integrate parameters of client models in the frequency domain. Then, at the client side, we design a Deputy-Enhanced Transfer (DET) to smoothly transfer global knowledge to the personalized local model. For the class imbalance problem, we propose the Conjoint Prototype-Aligned (CPA) loss to facilitate the balanced optimization of the FL framework. Considering the inaccessibility of private local data to other participants in FL, the CPA loss calculates the global conjoint objective based on global imbalance, and then adjusts the client-side local training through the prototype-aligned refinement to eliminate the imbalance gap with such a balanced goal. Extensive experiments are performed on real-world dermoscopic and prostate MRI FL datasets. The experimental results demonstrate the advantages of our FL framework in real-world medical scenarios, by outperforming state-of-the-art FL methods with a large margin. The source code is available at https://github.com/CityU-AIM-Group/PRR-Imbalancehttps://github.com/CityU-AIM-Group/PRR-Imbalance.

摘要

临床导向的深度学习算法与大规模医疗数据集相结合,极大地推动了计算机辅助诊断。为了解决日益增长的伦理和隐私问题,联邦学习(FL)采用分布式范式进行模型协同训练,而不是从多个机构收集样本进行集中式训练。尽管对 FL 进行了深入研究,但在将 FL 应用于真实医疗场景时,仍存在两个主要挑战,包括每次通信后的性能下降(即退步)和棘手的类别不平衡问题。因此,在本文中,我们提出了一种新的个性化 FL 框架来解决这两个问题。对于退步问题,我们首先在服务器端设计了一种渐进式傅里叶聚合(PFA),以在频域中逐步整合客户端模型的参数。然后,在客户端,我们设计了一个代理增强转移(DET),以平稳地将全局知识转移到个性化的本地模型。对于类别不平衡问题,我们提出了联合原型对齐(CPA)损失来促进 FL 框架的平衡优化。考虑到在 FL 中,私人本地数据对其他参与者是不可访问的,CPA 损失根据全局不平衡计算全局联合目标,然后通过原型对齐细化来调整客户端本地训练,以消除这种平衡目标下的不平衡差距。在真实的皮肤镜和前列腺 MRI FL 数据集上进行了广泛的实验。实验结果表明,我们的 FL 框架在真实医疗场景中的优势明显,大大优于最先进的 FL 方法。源代码可在 https://github.com/CityU-AIM-Group/PRR-Imbalance 上获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验