Suppr超能文献

基于随机森林算法增强的双发射分子印迹荧光传感法快速检测鱼和水样中的丙草胺

Random forest algorithm-enhanced dual-emission molecularly imprinted fluorescence sensing method for rapid detection of pretilachlor in fish and water samples.

机构信息

School of Food Science and Engineering, South China University of Technology, Guangzhou, China.

School of Mathematics, South China University of Technology, Guangzhou, China.

出版信息

J Hazard Mater. 2022 Oct 5;439:129591. doi: 10.1016/j.jhazmat.2022.129591. Epub 2022 Jul 14.

Abstract

A sensitive and efficient fluorescence sensor based on dual-emission molecularly imprinted polymers (Dual-em-MIPs) was successfully developed using the random forest (RF) machine-learning algorithm for the rapid detection of pretilachlor. SiO coatings on red-emitting CdSe/ZnS quantum dots (r-SiO@QDs) as intermediate light-emitting components are non-selective for pretilachlor, whereas molecularly imprinted layers coated with blue-emitting nitrogen-doped graphene quantum dots (N-GQD) are selective. Fluorescence images of the Dual-em-MIPs were acquired. The red (R), green (G), and blue (B) color values of the image were analyzed using an RF algorithm, and the classifier was trained using 103 fluorescent images for automatic analyses. Under optimized conditions, an excellent linear relationship between the sensor and pretilachlor was obtained in the range of 0.001-5.0 mg/L (R, 0.9958). Additionally, the satisfactory recoveries of Dual-em-MIPs ranged between 92.2 % and 107.6 % for the real samples, with a relative standard deviation (RSD) under 6.5 %. The satisfactory recoveries of the RF model based on the fluorescence sensor were 84.2-108.2 % with the RSD under 6.4 %. Overall, the proposed fluorescence sensor based on Dual-em-MIPs and machine learning methods was successfully used to determine pretilachlor in the environment and in aquatic products.

摘要

基于双发射分子印迹聚合物(Dual-em-MIPs)的高灵敏度和高效荧光传感器,采用随机森林(RF)机器学习算法成功开发,用于快速检测丙草胺。SiO 涂层的红色发射 CdSe/ZnS 量子点(r-SiO@QDs)作为中间发光组件对丙草胺没有选择性,而涂有蓝色发射氮掺杂石墨烯量子点(N-GQD)的分子印迹层具有选择性。获取了 Dual-em-MIPs 的荧光图像。使用 RF 算法分析图像的红色 (R)、绿色 (G) 和蓝色 (B) 颜色值,并使用 103 张荧光图像对分类器进行训练,用于自动分析。在优化条件下,传感器与丙草胺在 0.001-5.0 mg/L 范围内呈良好线性关系(R,0.9958)。此外,对于实际样品,Dual-em-MIPs 的回收率在 92.2%-107.6%之间,相对标准偏差(RSD)小于 6.5%。基于荧光传感器的 RF 模型的回收率为 84.2-108.2%,RSD 小于 6.4%。总体而言,基于 Dual-em-MIPs 和机器学习方法的荧光传感器成功用于环境和水产品中丙草胺的测定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验