Wang Zhenggong, Luo Xiaofan, Song Zejun, Lu Kuan, Zhu Shouwen, Yang Yanshao, Zhang Yatao, Fang Wangxi, Jin Jian
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China.
i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.
Nat Commun. 2022 Jul 19;13(1):4169. doi: 10.1038/s41467-022-31575-y.
Trade-off between permeability and nanometer-level selectivity is an inherent shortcoming of membrane-based separation of molecules, while most highly porous materials with high adsorption capacity lack solution processability and stability for achieving adsorption-based molecule separation. We hereby report a hydrophilic amidoxime modified polymer of intrinsic microporosity (AOPIM-1) as a membrane adsorption material to selectively adsorb and separate small organic molecules from water with ultrahigh processing capacity. The membrane adsorption capacity for Rhodamine B reaches 26.114 g m, 10-1000 times higher than previously reported adsorptive membranes. Meanwhile, the membrane achieves >99.9% removal of various nano-sized organic molecules with water flux 2 orders of magnitude higher than typical pressure-driven membranes of similar rejections. This work confirms the feasibility of microporous polymers for membrane adsorption with high capacity, and provides the possibility of adsorptive membranes for molecular separation.
渗透性与纳米级选择性之间的权衡是基于膜的分子分离固有的缺点,而大多数具有高吸附容量的高度多孔材料缺乏实现基于吸附的分子分离所需的溶液可加工性和稳定性。我们在此报告一种亲水性偕胺肟修饰的固有微孔聚合物(AOPIM-1)作为膜吸附材料,以超高的处理能力从水中选择性吸附和分离小分子有机化合物。对罗丹明B的膜吸附容量达到26.114 g m,比先前报道的吸附膜高10至1000倍。同时,该膜实现了对各种纳米级有机分子>99.9%的去除率,水通量比具有相似截留率的典型压力驱动膜高2个数量级。这项工作证实了微孔聚合物用于高容量膜吸附的可行性,并为分子分离的吸附膜提供了可能性。