Suppr超能文献

从观察到的集体模式推断图中缺失的边。

Inferring missing edges in a graph from observed collective patterns.

作者信息

Haj Ali Selim, Hütt Marc-Thorsten

机构信息

Department of Life Sciences and Chemistry, Jacobs University Bremen, D-28759 Bremen, Germany.

出版信息

Phys Rev E. 2022 Jun;105(6-1):064610. doi: 10.1103/PhysRevE.105.064610.

Abstract

Many real-life networks are incomplete. Dynamical observations can allow estimating missing edges. Such procedures, often summarized under the term 'network inference', typically evaluate the statistical correlations among pairs of nodes to determine connectivity. Here, we offer an alternative approach: completing an incomplete network by observing its collective behavior. We illustrate this approach for the case of patterns emerging in reaction-diffusion systems on graphs, where collective behaviors can be associated with eigenvectors of the network's Laplacian matrix. Our method combines a partial spectral decomposition of the network's Laplacian matrix with eigenvalue assignment by matching the patterns to the eigenvectors of the incomplete graph. We show that knowledge of a few collective patterns can allow the prediction of missing edges and that this result holds across a range of network architectures. We present a numerical case study using activator-inhibitor dynamics and we illustrate that the main requirement for the observed patterns is that they are not confined to subsets of nodes, but involve the whole network.

摘要

许多现实生活中的网络是不完整的。动态观测可以用于估计缺失的边。这类通常被概括在“网络推断”这一术语下的方法,一般通过评估节点对之间的统计相关性来确定连接性。在此,我们提供一种替代方法:通过观察其集体行为来补全不完整的网络。我们针对图上反应扩散系统中出现的模式的情况阐释这种方法,其中集体行为可以与网络拉普拉斯矩阵的特征向量相关联。我们的方法将网络拉普拉斯矩阵的部分谱分解与通过将模式与不完整图的特征向量相匹配来进行特征值赋值相结合。我们表明,了解一些集体模式能够预测缺失的边,并且这一结果在一系列网络架构中都成立。我们给出一个使用激活剂 - 抑制剂动力学的数值案例研究,并说明对观测模式的主要要求是它们不限于节点子集,而是涉及整个网络。

相似文献

1
Inferring missing edges in a graph from observed collective patterns.
Phys Rev E. 2022 Jun;105(6-1):064610. doi: 10.1103/PhysRevE.105.064610.
3
The Laplacian spectrum of neural networks.
Front Comput Neurosci. 2014 Jan 13;7:189. doi: 10.3389/fncom.2013.00189.
4
An efficient supply management in water flow network using graph spectral techniques.
Environ Sci Pollut Res Int. 2023 Jan;30(2):2530-2543. doi: 10.1007/s11356-022-22335-y. Epub 2022 Aug 6.
5
Localization of Laplacian eigenvectors on random networks.
Sci Rep. 2017 Apr 25;7(1):1121. doi: 10.1038/s41598-017-01010-0.
6
Spectral and dynamical properties in classes of sparse networks with mesoscopic inhomogeneities.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 2):026123. doi: 10.1103/PhysRevE.80.026123. Epub 2009 Aug 24.
7
[Formula: see text]: Deep Generative Network Completion.
IEEE Trans Pattern Anal Mach Intell. 2022 Apr;44(4):1837-1852. doi: 10.1109/TPAMI.2020.3032286. Epub 2022 Mar 4.
8
9
Predicting and Correcting Missing Data on Diffusion Processes in Multiplex Networks.
Nonlinear Dynamics Psychol Life Sci. 2021 Apr;25(2):127-155.
10
Predictable topological sensitivity of Turing patterns on graphs.
Phys Rev E. 2022 Jan;105(1-1):014304. doi: 10.1103/PhysRevE.105.014304.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验