Suppr超能文献

拉普拉斯特征向量在随机网络上的定位

Localization of Laplacian eigenvectors on random networks.

作者信息

Hata Shigefumi, Nakao Hiroya

机构信息

Department of Physics and Astronomy, Kagoshima University, Kagoshima, 890-0065, Japan.

Department of Systems and Control Engineering, Tokyo Institute of Technology, Tokyo, 152-8552, Japan.

出版信息

Sci Rep. 2017 Apr 25;7(1):1121. doi: 10.1038/s41598-017-01010-0.

Abstract

In large random networks, each eigenvector of the Laplacian matrix tends to localize on a subset of network nodes having similar numbers of edges, namely, the components of each Laplacian eigenvector take relatively large values only on a particular subset of nodes whose degrees are close. Although this localization property has significant consequences for dynamical processes on random networks, a clear theoretical explanation has not yet been established. Here we analyze the origin of localization of Laplacian eigenvectors on random networks by using a perturbation theory. We clarify how heterogeneity in the node degrees leads to the eigenvector localization and that there exists a clear degree-eigenvalue correspondence, that is, the characteristic degrees of the localized nodes essentially determine the eigenvalues. We show that this theory can account for the localization properties of Laplacian eigenvectors on several classes of random networks, and argue that this localization should occur generally in networks with degree heterogeneity.

摘要

在大型随机网络中,拉普拉斯矩阵的每个特征向量倾向于定位于具有相似边数的网络节点子集上,也就是说,每个拉普拉斯特征向量的分量仅在度相近的特定节点子集上取相对较大的值。尽管这种定位特性对随机网络上的动力学过程有重大影响,但尚未建立清晰的理论解释。在这里,我们通过微扰理论分析随机网络上拉普拉斯特征向量定位的起源。我们阐明了节点度的异质性如何导致特征向量定位,并且存在明确的度 - 特征值对应关系,即定位节点的特征度本质上决定了特征值。我们表明该理论可以解释几类随机网络上拉普拉斯特征向量的定位特性,并认为这种定位通常会出现在具有度异质性的网络中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cf7/5430689/c199e1d28376/41598_2017_1010_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验