Bashinov A V, Efimenko E S, Muraviev A A, Volokitin V D, Meyerov I B, Leuchs G, Sergeev A M, Kim A V
Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia.
Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia.
Phys Rev E. 2022 Jun;105(6-2):065202. doi: 10.1103/PhysRevE.105.065202.
In studies of interaction of matter with laser fields of extreme intensity there are two limiting cases of a multibeam setup maximizing either the electric field or the magnetic field. In this work attention is paid to the optimal configuration of laser beams in the form of an m-dipole wave, which maximizes the magnetic field. We consider in such highly inhomogeneous fields the advantages and specific features of laser-matter interaction, which stem from individual particle trajectories that are strongly affected by gamma photon emission. It is shown that in this field mode qualitatively different scenarios of particle dynamics take place in comparison with the mode that maximizes the electric field. A detailed map of possible regimes of particle motion (ponderomotive trapping, normal radiative trapping, radial, and axial anomalous radiative trapping), as well as angular and energy distributions of particles and gamma photons, is obtained in a wide range of laser powers up to 300 PW, and it reveals signatures of radiation losses experimentally detectable even with subpetawatt lasers.
在物质与极强激光场相互作用的研究中,多光束装置存在两种极限情况,即分别使电场或磁场最大化。在这项工作中,我们关注呈m - 偶极波形式的激光束的最佳配置,其能使磁场最大化。我们在这种高度不均匀的场中考虑激光与物质相互作用的优势和特性,这些优势和特性源于受伽马光子发射强烈影响的单个粒子轨迹。结果表明,与使电场最大化的模式相比,在这种场模式下会出现性质不同的粒子动力学场景。在高达300拍瓦的宽激光功率范围内,获得了粒子运动的可能状态(有质动力俘获、正常辐射俘获、径向和轴向反常辐射俘获)以及粒子和伽马光子的角分布和能量分布的详细图谱,并且它揭示了即使使用亚拍瓦激光也能通过实验检测到的辐射损失特征。