Mishra Ankit, Raghav Tanu, Jalan Sarika
Complex Systems Lab, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore-453552, India.
Phys Rev E. 2022 Jun;105(6-1):064307. doi: 10.1103/PhysRevE.105.064307.
The distribution of the ratios of consecutive eigenvalue spacings of random matrices has emerged as an important tool to study spectral properties of many-body systems. This article numerically investigates the eigenvalue ratios distribution of various model networks, namely, small-world, Erdős-Rényi random, and (dis)assortative random having a diagonal disorder in the corresponding adjacency matrices. Without any diagonal disorder, the eigenvalues ratio distribution of these model networks depict Gaussian orthogonal ensemble (GOE) statistics. Upon adding diagonal disorder, there exists a gradual transition from the GOE to Poisson statistics depending upon the strength of the disorder. The critical disorder (w_{c}) required to procure the Poisson statistics increases with the randomness in the network architecture. We relate w_{c} with the time taken by maximum entropy random walker to reach the steady state. These analyses will be helpful to understand the role of eigenvalues other than the principal one for various network dynamics such as transient behavior.
随机矩阵连续本征值间距比的分布已成为研究多体系统谱性质的重要工具。本文通过数值研究了各种模型网络的本征值比分布,即小世界网络、厄尔多斯 - 雷尼随机网络以及在相应邻接矩阵中具有对角无序的(非) assortative 随机网络。在没有任何对角无序的情况下,这些模型网络的本征值比分布呈现高斯正交系综(GOE)统计特征。加入对角无序后,根据无序强度的不同,存在从GOE到泊松统计的逐渐转变。获得泊松统计所需的临界无序((w_c))随着网络架构的随机性增加而增大。我们将(w_c)与最大熵随机游走者达到稳态所需的时间联系起来。这些分析将有助于理解除主本征值之外的其他本征值在各种网络动力学(如瞬态行为)中的作用。