Suppr超能文献

复杂网络中的普遍性:随机矩阵分析

Universality in complex networks: random matrix analysis.

作者信息

Bandyopadhyay Jayendra N, Jalan Sarika

机构信息

Max-Planck Institute for the Physics of Complex Systems, Nöthnitzerstrasse 38, D-01187 Dresden, Germany.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Aug;76(2 Pt 2):026109. doi: 10.1103/PhysRevE.76.026109. Epub 2007 Aug 20.

Abstract

We apply random matrix theory to complex networks. We show that nearest neighbor spacing distribution of the eigenvalues of the adjacency matrices of various model networks, namely scale-free, small-world, and random networks follow universal Gaussian orthogonal ensemble statistics of random matrix theory. Second, we show an analogy between the onset of small-world behavior, quantified by the structural properties of networks, and the transition from Poisson to Gaussian orthogonal ensemble statistics, quantified by Brody parameter characterizing a spectral property. We also present our analysis for a protein-protein interaction network in budding yeast.

摘要

我们将随机矩阵理论应用于复杂网络。我们表明,各种模型网络(即无标度网络、小世界网络和随机网络)邻接矩阵的特征值的最近邻间距分布遵循随机矩阵理论的通用高斯正交系综统计。其次,我们展示了由网络结构属性量化的小世界行为的起始与由表征光谱属性的布罗迪参数量化的从泊松到高斯正交系综统计的转变之间的类比。我们还展示了对芽殖酵母中蛋白质-蛋白质相互作用网络的分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验