Suppr超能文献

基于 Span 的 BERT 关系抽取模型,利用规范化解剖学信息提取放射学发现。

Extracting Radiological Findings With Normalized Anatomical Information Using a Span-Based BERT Relation Extraction Model.

机构信息

University of Washington, Seattle, WA, USA.

George Mason University, Fairfax, VA, USA.

出版信息

AMIA Jt Summits Transl Sci Proc. 2022 May 23;2022:339-348. eCollection 2022.

Abstract

Medical imaging is critical to the diagnosis and treatment of numerous medical problems, including many forms of cancer. Medical imaging reports distill the findings and observations of radiologists, creating an unstructured textual representation of unstructured medical images. Large-scale use of this text-encoded information requires converting the unstructured text to a structured, semantic representation. We explore the extraction and normalization of anatomical information in radiology reports that is associated with radiological findings. We investigate this extraction and normalization task using a span-based relation extraction model that jointly extracts entities and relations using BERT. This work examines the factors that influence extraction and normalization performance, including the body part/organ system, frequency of occurrence, span length, and span diversity. It discusses approaches for improving performance and creating high-quality semantic representations of radiological phenomena.

摘要

医学影像对于诊断和治疗许多医学问题至关重要,包括许多形式的癌症。医学影像报告提取放射科医生的发现和观察结果,为非结构化的医学图像创建非结构化的文本表示。大规模使用这些文本编码信息需要将非结构化文本转换为结构化、语义化的表示形式。我们探索从放射科报告中提取与放射学发现相关的解剖学信息,并对其进行规范化处理。我们使用基于跨度的关系抽取模型来研究这个抽取和规范化任务,该模型使用 BERT 联合提取实体和关系。本研究考察了影响抽取和规范化性能的因素,包括身体部位/器官系统、出现频率、跨度长度和跨度多样性。本文还讨论了提高性能和创建放射现象高质量语义表示的方法。

相似文献

2
Event-Based Clinical Finding Extraction from Radiology Reports with Pre-trained Language Model.
J Digit Imaging. 2023 Feb;36(1):91-104. doi: 10.1007/s10278-022-00717-5. Epub 2022 Oct 17.
4
Extracting comprehensive clinical information for breast cancer using deep learning methods.
Int J Med Inform. 2019 Dec;132:103985. doi: 10.1016/j.ijmedinf.2019.103985. Epub 2019 Oct 2.
5
DocR-BERT: Document-Level R-BERT for Chemical-Induced Disease Relation Extraction via Gaussian Probability Distribution.
IEEE J Biomed Health Inform. 2022 Mar;26(3):1341-1352. doi: 10.1109/JBHI.2021.3116769. Epub 2022 Mar 7.
7
The performance of BERT as data representation of text clustering.
J Big Data. 2022;9(1):15. doi: 10.1186/s40537-022-00564-9. Epub 2022 Feb 8.
8
A span-based joint model for extracting entities and relations of bacteria biotopes.
Bioinformatics. 2021 Dec 22;38(1):220-227. doi: 10.1093/bioinformatics/btab593.
9
Path-based knowledge reasoning with textual semantic information for medical knowledge graph completion.
BMC Med Inform Decis Mak. 2021 Nov 29;21(Suppl 9):335. doi: 10.1186/s12911-021-01622-7.

引用本文的文献

2
Generalizing through Forgetting - Domain Generalization for Symptom Event Extraction in Clinical Notes.
AMIA Jt Summits Transl Sci Proc. 2023 Jun 16;2023:622-631. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验