University of Washington, Seattle, WA, USA.
George Mason University, Fairfax, VA, USA.
AMIA Jt Summits Transl Sci Proc. 2022 May 23;2022:339-348. eCollection 2022.
Medical imaging is critical to the diagnosis and treatment of numerous medical problems, including many forms of cancer. Medical imaging reports distill the findings and observations of radiologists, creating an unstructured textual representation of unstructured medical images. Large-scale use of this text-encoded information requires converting the unstructured text to a structured, semantic representation. We explore the extraction and normalization of anatomical information in radiology reports that is associated with radiological findings. We investigate this extraction and normalization task using a span-based relation extraction model that jointly extracts entities and relations using BERT. This work examines the factors that influence extraction and normalization performance, including the body part/organ system, frequency of occurrence, span length, and span diversity. It discusses approaches for improving performance and creating high-quality semantic representations of radiological phenomena.
医学影像对于诊断和治疗许多医学问题至关重要,包括许多形式的癌症。医学影像报告提取放射科医生的发现和观察结果,为非结构化的医学图像创建非结构化的文本表示。大规模使用这些文本编码信息需要将非结构化文本转换为结构化、语义化的表示形式。我们探索从放射科报告中提取与放射学发现相关的解剖学信息,并对其进行规范化处理。我们使用基于跨度的关系抽取模型来研究这个抽取和规范化任务,该模型使用 BERT 联合提取实体和关系。本研究考察了影响抽取和规范化性能的因素,包括身体部位/器官系统、出现频率、跨度长度和跨度多样性。本文还讨论了提高性能和创建放射现象高质量语义表示的方法。