Suppr超能文献

通过遗忘进行泛化——临床笔记中症状事件提取的领域泛化

Generalizing through Forgetting - Domain Generalization for Symptom Event Extraction in Clinical Notes.

作者信息

Zhou Sitong, Lybarger Kevin, Yetisgen Meliha, Ostendorf Mari

机构信息

University of Washington, Seattle, WA, USA.

George Mason University, Fairfax, VA, USA.

出版信息

AMIA Jt Summits Transl Sci Proc. 2023 Jun 16;2023:622-631. eCollection 2023.

Abstract

Symptom information is primarily documented in free-text clinical notes and is not directly accessible for downstream applications. To address this challenge, information extraction approaches that can handle clinical language variation across different institutions and specialties are needed. In this paper, we present domain generalization for symptom extraction using pretraining and fine-tuning data that differs from the target domain in terms of institution and/or specialty and patient population. We extract symptom events using a transformer-based joint entity and relation extraction method. To reduce reliance on domain-specific features, we propose a domain generalization method that dynamically masks frequent symptoms words in the source domain. Additionally, we pretrain the transformer language model (LM) on task-related unlabeled texts for better representation. Our experiments indicate that masking and adaptive pretraining methods can significantly improve performance when the source domain is more distant from the target domain.

摘要

症状信息主要记录在自由文本临床笔记中,下游应用无法直接获取。为应对这一挑战,需要能够处理不同机构和专业间临床语言差异的信息提取方法。在本文中,我们提出了一种用于症状提取的领域泛化方法,该方法使用在机构和/或专业以及患者群体方面与目标领域不同的预训练和微调数据。我们使用基于Transformer的联合实体和关系提取方法来提取症状事件。为减少对领域特定特征的依赖,我们提出一种领域泛化方法,该方法动态屏蔽源领域中频繁出现的症状词。此外,我们在与任务相关的未标记文本上对Transformer语言模型(LM)进行预训练,以获得更好的表示。我们的实验表明,当源领域与目标领域的距离更远时,屏蔽和自适应预训练方法可以显著提高性能。

相似文献

1
Generalizing through Forgetting - Domain Generalization for Symptom Event Extraction in Clinical Notes.
AMIA Jt Summits Transl Sci Proc. 2023 Jun 16;2023:622-631. eCollection 2023.
6
Medication event extraction in clinical notes: Contribution of the WisPerMed team to the n2c2 2022 challenge.
J Biomed Inform. 2023 Jul;143:104400. doi: 10.1016/j.jbi.2023.104400. Epub 2023 May 19.
10
Extracting comprehensive clinical information for breast cancer using deep learning methods.
Int J Med Inform. 2019 Dec;132:103985. doi: 10.1016/j.ijmedinf.2019.103985. Epub 2019 Oct 2.

引用本文的文献

1
CACER: Clinical concept Annotations for Cancer Events and Relations.
J Am Med Inform Assoc. 2024 Nov 1;31(11):2583-2594. doi: 10.1093/jamia/ocae231.

本文引用的文献

2
Extracting COVID-19 diagnoses and symptoms from clinical text: A new annotated corpus and neural event extraction framework.
J Biomed Inform. 2021 May;117:103761. doi: 10.1016/j.jbi.2021.103761. Epub 2021 Mar 26.
3
Chinese clinical named entity recognition with variant neural structures based on BERT methods.
J Biomed Inform. 2020 Jul;107:103422. doi: 10.1016/j.jbi.2020.103422. Epub 2020 Apr 28.
5
BioBERT: a pre-trained biomedical language representation model for biomedical text mining.
Bioinformatics. 2020 Feb 15;36(4):1234-1240. doi: 10.1093/bioinformatics/btz682.
6
A Learning Health Care System Using Computer-Aided Diagnosis.
J Med Internet Res. 2017 Mar 8;19(3):e54. doi: 10.2196/jmir.6663.
7
MIMIC-III, a freely accessible critical care database.
Sci Data. 2016 May 24;3:160035. doi: 10.1038/sdata.2016.35.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验