Chandrasekaran Jaikanth, Balasubramaniam Jayasudha
Department of Pharmacology, School of Pharmacy & Technology Management, SVKM'S NMIMS University, Polepally SEZ, TSIIC, Plot no. B4, Green Industrial Park, Jadcherla, Hyderabad Telangana 509 301 India.
Department of Pharmacology, PSG College of Pharmacy, Coimbatore, India.
Struct Chem. 2022;33(5):1391-1407. doi: 10.1007/s11224-022-02012-z. Epub 2022 Jul 9.
COVID-19 infection is associated with a significant fatality rate in individuals suffering from severe acute respiratory distress syndrome (ARDS). Among the several possibilities, inhibition of hypoxia-inducible factor prolyl hydroxylase-2 or prolyl hydroxylase domain-containing protein 2 (PHD2) in a hypoxia-independent way is a prospective therapeutic target for the treatment of ARDS. Vadadustat, Roxadustat, Daprodustat, Desidustat, and Enarudustat are the available clinical trial inhibitors. This study is proposed to focus on the repurposing of FDA-approved drugs as effective PHD2 inhibitors. This computational study utilises e-pharmacophore hypothesis generation from the native ligand-protein complex (PDB ID: 5OX6) based on XP visualiser information. The hypothesis containing five essential features (AAANR) was incorporated for FDA database screening, followed by Glide XP molecular docking and Prime MM-GBSA binding free energy calculations. Top scored ligands were investigated and Fenbufen was identified as an effective PHD-2 inhibitor by comparing with the native co-crystal ligand (Vadadustat). The manual lead optimisation of the Fenbufen structure was adopted to improve inhibitory potency, by increasing the binding affinity and protein-ligand stability. The newly designed compounds B and C showed additional binding interactions, excellent docking scores, binding free energy, and an acceptable range of ADME properties. Also, Fenbufen and compound C owned preferable protein-ligand stability during MD simulation when compared with the co-crystallised clinical trial ligand. Based on our findings, we deduce that Fenbufen can be proposed as an effective repurposable candidate as its structural modification showed a remarkable improvement in PHD2 inhibition.
The online version contains supplementary material available at 10.1007/s11224-022-02012-z.
新型冠状病毒肺炎(COVID-19)感染与患有严重急性呼吸窘迫综合征(ARDS)的个体的显著死亡率相关。在多种可能性中,以不依赖缺氧的方式抑制缺氧诱导因子脯氨酰羟化酶-2或含脯氨酰羟化酶结构域蛋白2(PHD2)是治疗ARDS的一个潜在治疗靶点。vadadustat、roxadustat、daprodustat、desidustat和enarudustat是现有的临床试验抑制剂。本研究旨在专注于将美国食品药品监督管理局(FDA)批准的药物重新用作有效的PHD2抑制剂。这项计算研究利用基于XP可视化器信息从天然配体-蛋白质复合物(PDB ID:5OX6)生成电子药效团假设。将包含五个基本特征(AAANR)的假设用于FDA数据库筛选,随后进行Glide XP分子对接和Prime MM-GBSA结合自由能计算。对得分最高的配体进行了研究,并通过与天然共结晶配体(vadadustat)比较,确定芬布芬为一种有效的PHD-2抑制剂。采用芬布芬结构的人工先导优化来提高抑制效力,通过增加结合亲和力和蛋白质-配体稳定性。新设计的化合物B和C显示出额外的结合相互作用、优异的对接分数、结合自由能以及可接受的药物代谢动力学(ADME)性质范围。此外,与共结晶的临床试验配体相比,芬布芬和化合物C在分子动力学(MD)模拟过程中具有较好的蛋白质-配体稳定性。基于我们的研究结果,我们推断芬布芬可以作为一种有效的可重新利用候选药物提出,因为其结构修饰在PHD2抑制方面显示出显著改善。
在线版本包含可在10.1007/s11224-022-02012-z获取的补充材料。