Suppr超能文献

深度学习在牙周病学和口腔种植学中的应用:范围综述。

Deep learning in periodontology and oral implantology: A scoping review.

机构信息

Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.

Dentofacial Deformities Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

J Periodontal Res. 2022 Oct;57(5):942-951. doi: 10.1111/jre.13037. Epub 2022 Jul 20.

Abstract

Deep learning (DL) has been employed for a wide range of tasks in dentistry. We aimed to systematically review studies employing DL for periodontal and implantological purposes. A systematic electronic search was conducted on four databases (Medline via PubMed, Google Scholar, Scopus, and Embase) and a repository (ArXiv) for publications after 2010, without any limitation on language. In the present review, we included studies that reported deep learning models' performance on periodontal or oral implantological tasks. Given the heterogeneities in the included studies, no meta-analysis was performed. The risk of bias was assessed using the QUADAS-2 tool. We included 47 studies: focusing on imaging data (n = 20) and non-imaging data in periodontology (n = 12), or dental implantology (n = 15). The detection of periodontitis and gingivitis or periodontal bone loss, the classification of dental implant systems, or the prediction of treatment outcomes in periodontology and implantology were major use cases. The performance of the models was generally high. However, it varied given the employed methods (which includes various types of convolutional neural networks (CNN) and multi-layered perceptron (MLP)), the variety in specific modeling tasks, as well as the chosen and reported outcomes, outcome measures and outcome level. Only a few studies (n = 7) showed a low risk of bias across all assessed domains. A growing number of studies evaluated DL for periodontal or implantological objectives. Heterogeneity in study design, poor reporting and a high risk of bias severely limit the comparability of studies and the robustness of the overall evidence.

摘要

深度学习(DL)已广泛应用于口腔医学的各项任务中。本研究旨在系统综述运用 DL 技术进行牙周和种植学相关研究。我们对四个数据库(Medline 通过 PubMed、Google Scholar、Scopus 和 Embase)和一个知识库(ArXiv)进行了系统的电子检索,检索了 2010 年后发表的文献,未对语言进行任何限制。在本综述中,我们纳入了报道深度神经网络模型在牙周或口腔种植相关任务中性能的研究。由于纳入研究存在异质性,故未进行荟萃分析。使用 QUADAS-2 工具评估偏倚风险。我们共纳入 47 项研究:聚焦于影像学数据(n=20)和牙周非影像学数据(n=12),或口腔种植学数据(n=15)。主要的应用案例包括牙周炎和牙龈炎或牙周骨丧失的检测、牙种植系统的分类,以及牙周和种植治疗效果的预测。模型的性能通常较高。然而,由于所采用的方法(包括各种类型的卷积神经网络(CNN)和多层感知机(MLP))、特定建模任务的多样性,以及所选和报告的结果、评估指标和结果水平的不同,其性能存在差异。仅有少数研究(n=7)在所有评估领域均表现出低偏倚风险。越来越多的研究评估了 DL 技术在牙周或种植学目标中的应用。研究设计、报告质量差以及高偏倚风险严重限制了研究之间的可比性和整体证据的稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验