Suppr超能文献

LI-Detector:一种用于构建有序基因替换文库的方法。

LI-Detector: a Method for Curating Ordered Gene-Replacement Libraries.

机构信息

Institute for Molecular Bioscience, University of Queenslandgrid.1003.2, Brisbane, Queensland, Australia.

Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom.

出版信息

Microbiol Spectr. 2022 Aug 31;10(4):e0083322. doi: 10.1128/spectrum.00833-22. Epub 2022 Jul 20.

Abstract

In recent years the availability of genome sequence information has grown logarithmically resulting in the identification of a plethora of uncharacterized genes. To address this gap in functional annotation, many high-throughput screens have been devised to uncover novel gene functions. Gene-replacement libraries are one such tool that can be screened in a high-throughput way to link genotype and phenotype and are key community resources. However, for a phenotype to be attributed to a specific gene, there needs to be confidence in the genotype. Construction of large libraries can be laborious and occasionally errors will arise. Here, we present a rapid and accurate method for the validation of any ordered library where a gene has been replaced or disrupted by a uniform linear insertion (LI). We applied our method (LI-detector) to the well-known Keio library of Escherichia coli gene-deletion mutants. Our method identified 3,718 constructed mutants out of a total of 3,728 confirmed isolates, with a success rate of 99.7% for identifying the correct kanamycin cassette position. This data set provides a benchmark for the purity of the Keio mutants and a screening method for mapping the position of any linear insertion, such as an antibiotic resistance cassette in any ordered library. The construction of ordered gene replacement libraries requires significant investment of time and resources to create a valuable community resource. During construction, technical errors may result in a limited number of incorrect mutants being made. Such mutants may confound the output of subsequent experiments. Here, using the remarkable E. coli Keio knockout library, we describe a method to rapidly validate the construction of every mutant.

摘要

近年来,基因组序列信息的可用性呈对数级增长,导致大量未被描述的基因被识别出来。为了解决功能注释中的这一空白,许多高通量筛选已经被设计出来以发现新的基因功能。基因替换文库就是这样一种工具,可以以高通量的方式进行筛选,以连接基因型和表型,并且是关键的社区资源。然而,要将表型归因于特定的基因,就需要对基因型有信心。构建大型文库可能很费力,并且偶尔会出现错误。在这里,我们提出了一种快速准确的方法,用于验证任何经过有序文库构建的基因,该基因已被均匀线性插入(LI)替换或破坏。我们将我们的方法(LI 探测器)应用于著名的大肠杆菌基因缺失突变体 Keio 文库。我们的方法在总共 3728 个确认分离株中鉴定出 3718 个构建的突变体,鉴定正确卡那霉素盒位置的成功率为 99.7%。该数据集为 Keio 突变体的纯度提供了基准,并为在任何有序文库中定位任何线性插入(例如抗生素抗性盒)提供了筛选方法。有序基因替换文库的构建需要大量的时间和资源投入,以创建有价值的社区资源。在构建过程中,技术错误可能导致少数错误突变体的产生。这些突变体可能会混淆后续实验的结果。在这里,我们使用引人注目的大肠杆菌 Keio 敲除文库,描述了一种快速验证每个突变体构建的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c910/9431181/d16af31c1c38/spectrum.00833-22-f001.jpg

相似文献

1
LI-Detector: a Method for Curating Ordered Gene-Replacement Libraries.
Microbiol Spectr. 2022 Aug 31;10(4):e0083322. doi: 10.1128/spectrum.00833-22. Epub 2022 Jul 20.
4
The Essential Genome of K-12.
mBio. 2018 Feb 20;9(1):e02096-17. doi: 10.1128/mBio.02096-17.
5
6
Genome-Wide Mutagenesis in Borrelia burgdorferi.
Methods Mol Biol. 2018;1690:201-223. doi: 10.1007/978-1-4939-7383-5_16.
9
Construction of an Ordered Transposon Library for Uropathogenic Proteus mirabilis HI4320.
Microbiol Spectr. 2022 Dec 21;10(6):e0314222. doi: 10.1128/spectrum.03142-22. Epub 2022 Nov 15.
10
An ultra-dense library resource for rapid deconvolution of mutations that cause phenotypes in Escherichia coli.
Nucleic Acids Res. 2016 Mar 18;44(5):e41. doi: 10.1093/nar/gkv1131. Epub 2015 Nov 17.

引用本文的文献

1
Optimized Replication of Arrayed Bacterial Mutant Libraries Increases Access to Biological Resources.
Microbiol Spectr. 2023 Aug 17;11(4):e0169323. doi: 10.1128/spectrum.01693-23. Epub 2023 Jul 11.
2
Optimized replication of arrayed bacterial mutant libraries increase access to biological resources.
bioRxiv. 2023 Apr 25:2023.04.25.537918. doi: 10.1101/2023.04.25.537918.

本文引用的文献

1
Loss of YhcB results in dysregulation of coordinated peptidoglycan, LPS and phospholipid synthesis during Escherichia coli cell growth.
PLoS Genet. 2021 Dec 23;17(12):e1009586. doi: 10.1371/journal.pgen.1009586. eCollection 2021 Dec.
2
A decade of advances in transposon-insertion sequencing.
Nat Rev Genet. 2020 Sep;21(9):526-540. doi: 10.1038/s41576-020-0244-x. Epub 2020 Jun 12.
3
The Essential Genome of K-12.
mBio. 2018 Feb 20;9(1):e02096-17. doi: 10.1128/mBio.02096-17.
4
Transposon insertion libraries for the characterization of mutants from the kiwifruit pathogen Pseudomonas syringae pv. actinidiae.
PLoS One. 2017 Mar 1;12(3):e0172790. doi: 10.1371/journal.pone.0172790. eCollection 2017.
6
High-throughput bacterial functional genomics in the sequencing era.
Curr Opin Microbiol. 2015 Oct;27:86-95. doi: 10.1016/j.mib.2015.07.012. Epub 2015 Sep 1.
7
Complete Genome Sequence of Escherichia coli BW25113.
Genome Announc. 2014 Oct 16;2(5):e01038-14. doi: 10.1128/genomeA.01038-14.
8
Defined single-gene and multi-gene deletion mutant collections in Salmonella enterica sv Typhimurium.
PLoS One. 2014 Jul 9;9(7):e99820. doi: 10.1371/journal.pone.0099820. eCollection 2014.
9
Trimmomatic: a flexible trimmer for Illumina sequence data.
Bioinformatics. 2014 Aug 1;30(15):2114-20. doi: 10.1093/bioinformatics/btu170. Epub 2014 Apr 1.
10
yciM is an essential gene required for regulation of lipopolysaccharide synthesis in Escherichia coli.
Mol Microbiol. 2014 Jan;91(1):145-57. doi: 10.1111/mmi.12452. Epub 2013 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验