Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.
Rothamsted Research, Harpenden, United Kingdom.
PLoS Genet. 2022 Jul 20;18(7):e1010298. doi: 10.1371/journal.pgen.1010298. eCollection 2022 Jul.
During meiosis, DNA double-strand breaks (DSBs) occur throughout the genome, a subset of which are repaired to form reciprocal crossovers between chromosomes. Crossovers are essential to ensure balanced chromosome segregation and to create new combinations of genetic variation. Meiotic DSBs are formed by a topoisomerase-VI-like complex, containing catalytic (e.g. SPO11) proteins and auxiliary (e.g. PRD3) proteins. Meiotic DSBs are formed in chromatin loops tethered to a linear chromosome axis, but the interrelationship between DSB-promoting factors and the axis is not fully understood. Here, we study the localisation of SPO11-1 and PRD3 during meiosis, and investigate their respective functions in relation to the chromosome axis. Using immunocytogenetics, we observed that the localisation of SPO11-1 overlaps relatively weakly with the chromosome axis and RAD51, a marker of meiotic DSBs, and that SPO11-1 recruitment to chromatin is genetically independent of the axis. In contrast, PRD3 localisation correlates more strongly with RAD51 and the chromosome axis. This indicates that PRD3 likely forms a functional link between SPO11-1 and the chromosome axis to promote meiotic DSB formation. We also uncovered a new function of SPO11-1 in the nucleation of the synaptonemal complex protein ZYP1. We demonstrate that chromosome co-alignment associated with ZYP1 deposition can occur in the absence of DSBs, and is dependent on SPO11-1, but not PRD3. Lastly, we show that the progression of meiosis is influenced by the presence of aberrant chromosomal connections, but not by the absence of DSBs or synapsis. Altogether, our study provides mechanistic insights into the control of meiotic DSB formation and reveals diverse functional interactions between SPO11-1, PRD3 and the chromosome axis.
在减数分裂过程中,DNA 双链断裂(DSBs)会在整个基因组中发生,其中一部分会被修复,在染色体之间形成相互交叉。交叉对于确保染色体的平衡分离和创造新的遗传变异组合至关重要。减数分裂 DSB 由拓扑异构酶-VI 样复合物形成,该复合物包含催化(例如 SPO11)蛋白和辅助(例如 PRD3)蛋白。减数分裂 DSB 形成于与线性染色体轴相连的染色质环中,但促进 DSB 的因素与轴之间的相互关系尚未完全了解。在这里,我们研究了 SPO11-1 和 PRD3 在减数分裂过程中的定位,并研究了它们与染色体轴的各自功能。通过免疫细胞遗传学,我们观察到 SPO11-1 的定位与染色体轴和 RAD51(减数分裂 DSB 的标志物)的定位相对较弱重叠,并且 SPO11-1 与染色质的募集在遗传上与轴无关。相比之下,PRD3 的定位与 RAD51 和染色体轴的相关性更强。这表明 PRD3 可能在 SPO11-1 和染色体轴之间形成功能性联系,以促进减数分裂 DSB 的形成。我们还揭示了 SPO11-1 在联会复合体蛋白 ZYP1 成核中的新功能。我们证明,与 ZYP1 沉积相关的染色体共对准可以在没有 DSB 的情况下发生,并且依赖于 SPO11-1,但不依赖于 PRD3。最后,我们表明减数分裂的进展受到异常染色体连接的影响,但不受 DSB 或联会的影响。总的来说,我们的研究提供了对减数分裂 DSB 形成的控制机制的深入了解,并揭示了 SPO11-1、PRD3 和染色体轴之间的多种功能相互作用。