Universidade Federal de Pernambuco, Departamento de Estatística, Avenida Professor Moraes Rego, s/n, Bairro Iputinga, 50670-901 Recife, PE, Brazil.
Universidade de São Paulo, Departamento de Ciências Exatas, Avenida Pádua Dias, 11, Bairro São Dimas, 13418-900 Piracicaba, SP, Brazil.
An Acad Bras Cienc. 2022 Jul 18;94(2):e20201972. doi: 10.1590/0001-3765202220201972. eCollection 2022.
We define two new flexible families of continuous distributions to fit real data by compoun-ding the Marshall-Olkin class and the power series distribution. These families are very competitive to the popular beta and Kumaraswamy generators. Their densities have linear representations of exponentiated densities. In fact, as the main properties of thirty five exponentiated distributions are well-known, we can easily obtain several properties of about three hundred fifty distributions using the references of this article and five special cases of the power series distribution. We provide a package implemented in R software that shows numerically the precision of one of the linear representations. This package is useful to calculate numerical values for some statistical measurements of the generated distributions. We estimate the parameters by maximum likelihood. We define a regression based on one of the two families. The usefulness of a generated distribution and the associated regression is proved empirically.
我们通过组合 Marshall-Olkin 类和幂级数分布定义了两个新的灵活连续分布族,以拟合实际数据。这些族与流行的 beta 和 Kumaraswamy 生成器非常有竞争力。它们的密度具有指数密度的线性表示。事实上,由于三十五个指数分布的主要性质是众所周知的,我们可以使用本文的参考文献和幂级数分布的五个特殊情况轻松获得大约三百五十个分布的几个性质。我们提供了一个在 R 软件中实现的包,该包数值显示了其中一个线性表示的精度。该包可用于计算生成分布的某些统计测量的数值值。我们通过最大似然法估计参数。我们定义了基于两个族之一的回归。经验证明了生成分布和相关回归的有用性。